
OpenOffice.org API − new concepts in API design

Michael Hönnig
StarOffice GmbH, Webtop Group

mi@sun.com / Michael.Hoennig@Germany.Sun.COM

ABSTRACT

� design paradigms and pr inciples

� conflicts with remote transparency

� UNO object technology overview

� between Java and CORBA

� Examples with code

After a short overview, in which areas our API can be used, I
like to start with the design paradigm of the OpenOffice.org
API: interfaces and support classes. I will continue with
orthogonality as a design principle and its problem when it
comes to remote transparency or the conflict of client
optimized vs. server optimized APIs.

Next, I like to give a short overview of the used base
technology UNO and how it relates to Java and CORBA.
This includes some conflicts involved with these two worlds
and how the OpenOffice.org API deals with it.
OpenOffice.org its open source approach had a big influence
to this aspect.

Finally, I will give you an overview about the topics covered
by the API and how they interrelate. Two examples, one of
it in detail with code, similar to Java, will show the power of
the API and give some more tangibility.

IINTRODUCTION − APPLICATION AREAS

� office suite automation macros

� use OpenOffice.org components

� modify StarOffice components

� integrate new components
into OpenOffice.org environment

� adapt or exchange the UI
(for example as in Sun ONE Webtop)

The OpenOffice.org API is designed for multiple purposes,
not only, like other office suite APIs for automation macros.

Through this API you can use the OpenOffice.org
applications as components in your own application. For
example there is a JavaBean wrapper available.

It is possible to modify the functionality of the
OpenOffice.org components by wrapping into own
components.

You can integrate your own components into OpenOffice.org
to extend the functionality. Examples here are specialized
linguistic modules, spreadsheet addins, import− and export−
filters or specific chart diagram types.

And you can exchange the user interface of OpenOffice.org,
like it is done in Sun ONE Webtop. What is currently not
possible, is to modify the user interface. Here we expect a
major shift in the implementation, for example to XUL. But
this is not fixed yet.

OUR PARADIGM:
INTERFACES AND SUPPORT CLASSES

� Implementation Inher itance (no)

� partly implemented base classes
� fat interfaces or deep hierarchy
� components do depend on environment
� high version dependence

� Inter faces and Suppor t−Classes (yes)

� communication only by interfaces
� support classes

for recurring implementations
� components are independent

from environment
� low version dependence

Most object oriented systems are based on the
implementation inheritance paradigm. This paradigm uses
base classes with partial implementations and

Sun Microsystems Confidential and Propr ietary Information− Internal Use Only
1

implementation inheritance for specialization. When it
comes to programming in the large, some disadvantages
become obvious: you end up either in a deep inheritance
hierarchy or with many methods in each class. Additionally,
you will quickly realize how dependent specialized
implementations become on their environment − the base
class implementation, not only their interfaces. This results
in a high version dependence, too. Another problem is mixed
language programming, which is difficult with this paradigm.

Our approach uses only specifications for communications
between components. The specifications are made up by
several stereotypes, where interfaces play the major role. To
reuse implementations, other components can be aggregated.
Partial implementations are usually called support classes.
This paradigm has certainly an overhead which is not
appropriate for programming−in−the small, but for
programming−in−the−large the advantages are show up:
independence on concrete implementations of the
environment and low version dependence. Additionally, this
paradigm makes mixed language programming easy.

stereotypes

� implementation classes

� services

� inter faces

� structs

� exceptions

� constants/constant groups/enums

Stereotypes are categories of user defined types. Within a
single stereotype the purpose is defined and different from
the other stereotypes.

Implementation classes have a minor role in our paradigm.
Their purpose is mostly to implement service specifications.
Multiple implementation classes of the same service should
be interchangeable.

Services specify the outer behavior of objects. They are pure
specifications, with no implementation or data storage at all.
Services consist of interfaces, properties and a description of
how these elements interrelate. Additionally, services can
inherit other interfaces in a way, by specifying that these
other services have to be implemented as well. Some
services are abstract specifications of a general behavior, like
a TextContent. Others are concrete that they can be
instanced. Instancing a service simply means to find an
implementation class which supports this service and create

an instance of it.

Interfaces are collections of methods which belong to a
single aspect of functionality. They, too, do not have any
implementation. Many interfaces are very general and their
concrete behavior is specified in the services.

Structs consist of data only, they are very useful to transfer
fixed collections of data. Exceptions are similar and used for
error handling. Constant groups specify values.

stereotype: interface

On our design paradigm, interfaces are the only stereotype
which contains methods.

One big advantage over having methods in classes which are
partly or fully implemented, is compete programming
language independence without a big loss in efficiency.

In a context of component technology, this is superior over
APIs which defined methods at an implementation class
level, as well. This is true, even if these are only used on
helping objects because these classes would be either
inefficient from other programming languages or would have
to be implemented in all target programming language.

stereotype: service

In our design paradigm, services specify the behavior of
objects without representing a certain implementation.

In many cases, multiple implementation of the same service
make sense, even within a single environment like
OpenOffice.org. An example can be a Text service, which
exists in a very powerful implementation for a
TextDocument and in a less powerful, but more efficient,
implementation for texts in drawing objects.

Actually, there are two kinds of services
� services which can be instanced directly, for example a

TextDocument: This kind of service specifies already
enough details to form a useful component.

� and abstract base−services, for example a TextContent:
This kind of service specifies only a general behavior.

stereotype: struct

In our design paradigm, structs are used as plain data
containers of mixed types. They have no methods.

Though this usage seems to break basic OOP rules, it is a big
advantage for efficiency in component environments.

A struct without methods can easily be transferred into other
programming language environments. A struct with methods
(a class) either would have to be implemented in all

Sun Microsystems Confidential and Propr ietary Information− Internal Use Only
2

programming languages or access would be very inefficient.

stereotype: implementation class

In our design paradigm, implementation classes play a minor
role. They have to fulfill the service specification they
predict to support, period.

Implementation classes can be instanced by
� either a factory (specified by a service name)
� implicitly by accessing sub−objects

Programs should be implemented against the service
description of the components, not the actual implementation
classes.

COMMON DESIGN PATTERNS

� Factory global/doc.

� Proper tySet/−Access etc.

� Collections/Containers

� Enumerators/I terators

� X...Supplier

� Events

� Exceptions for Er ror Handling

Many design patterns reoccur over and over again in our API.
Here is a list of the most important design patterns in
OpenOffice.org API:

New instances of objects are created by factories, mostly
specified by their service name. Factories are simply
interfaces with a method which creates new object of a
specified type. We have a global factory and many
components have their own factory for sub−components.

PropertySets are used to access non−structural member data
of objects, for example formatting information. The
interfaces resemble pretty much the PropertySet of Java.

Collections offer a generic access to multiple sub−objects of
the same type or at least the same base type. Containers
additionally offer methods to add, change and remove sub−
objects.

Enumerators or iterators, including cursors, make it possible
to walk through sub−objects. They are always created by the
container, this way efficient iterators can be made available.

X...Supplier interfaces are used to access structural data, this

means distinct sub−objects, when these sub−members are
optional and accessors don’ t belong in another interface.

Events are used to notify external components about changes.
We use the same event concept like in Java. Exceptions are
used for error handling.

EXAMPLES

example: PropertySet

The PropertySet concept of OpenOffice.org is actually very
similar to the one of Java. We have probably a stricter use of
PropertySets for non−structural elements only (execpt for the
generic XPropertySet when using introspection).

Here we have a nice example of breaking our orthogonality
rule and why remote transparency does not exist. At least, it
does not exist when it comes about efficiency.
XMultiPropertyAccess and XPropertyAccess are mostly for
remote access (or at least access from a different process);
their purpose is to reduce the number of calls, for the getter
methods even synchronous calls.

XPropertySet, on the other hand, is very convenient for the
application programmer, but slow in distributed
environments.

Sun Microsystems Confidential and Propr ietary Information− Internal Use Only
3

example: TextDocument / structure

A TextDocument consists of the main Text object an many
other sub−objects, like style−sheets, meta information etc.,
which are not shown in this diagram.

A Text service is used not only as a main text object of a
TextDocument, it is used as the text object in table cells or
text frames as well. It is even used as a text object in
drawing objects or spreadsheet cells. Of course the concrete
Text in a TextDocument has more interfaces, thus offers
more functionality.

The Text itself consists of a series of TextContents, mostly
Paragraphs and TextTables or TextSections. These can be
enumerated, by creating an enumerator object at its
XEnumerationAccess interface.

A Paragraph consists of one or multiple special TextRanges,
called text portions. Each portion spans an area with same
attributes and/or TextContents bound to it. Bound
TextContents comprise for example TextFrames,
TextEmbeddedObjects and TextGraphics.

Example: TextDocument / code

XText Document xDoc = xEnv. l oadComponent ByURL(
“ f i l e: / / / . . . , . . .) ;

XText xText = xDoc. get Text () ;

XEnumer at i onAccess xNodes =
xText . quer yI nt er f ace(

 XEnumer at i onAccess) ;
XEnumer at i on xNodeI t er =

xNodes. cr eat eEnumer at i on() ;

whi l e (xNodeI t er . hasMor eEl ement s()) {

XPar agr aph xPar a = xNodeI t er .
 next El ement () . quer yI nt er f ace(
 XPar agr aph) ;

i f (xPar a ! = nul l) {

. . .

}

}

You can obtain TextCursors from a Text object as well.
These TextCursors are independent from the TextCursor in
the views, although these are TextCursors too. A TextCursor
is a TextRange too, just one which can be moved.

This piece of pseudo code, which is somewhat similar to
Java, shows a simple iteration through a TextDocument. The
differences to real Java are neglectable for our purpose, the
API, real Java code would be a little bit longer, for example
because type names cannot simply be used as arguments.
But this belongs more in a UNO presentation, anyway.

The first line loads a new document from the desktop
environment. The desktop environment itself is a singleton
service which can be instanced by the global UNO service
manager. XComponentLoader::loadComponentByUR()L
expects the URL from which the document is to be loaded,
and some other arguments which are omitted here.

The second line casts the loaded component to a text
document and gets the main text from it. In a real live
application, we would need some error handling code here,
of course.

The next line gets the XEnumerationAccess interface from
our main text object. In this context, the
XEnumerationAccess enumerates the nodes (mostly
paragraphs) of the text.

This iteration is shown here too. Actually, to simplify the
code, we omitted the cast from the any, which is returned by
XEnumeration::nextElement() to XTextContent.

The last few lines try to get an XParagraph interface from the
node, which could be a TextTable too, for example. And if it
is available, we execute some more code on the paragraph.

XText Document xPar a = . . . ;

XEnumer at i onAccess xPar aPor t i ons =
xPar a. quer yI nt er f ace(
 xEnumer at i onAccess) ;
XEnumer at i on xPor t i onI t er =
 xPar aPor t i ons. cr eat eEnumer at i on() ;

whi l e (xPor t i onI t er . hasMor eEl ement s()) {

XPr oper t ySet xPor t i onPr ops =
xPor t i onI t er . next El ement () .

Sun Microsystems Confidential and Propr ietary Information− Internal Use Only
4

quer yI nt er f ace(XPr oper t ySet) ;

any aBol dVal =
xPor t i onPr ops. get Val ue(Char Wei ght) ;

i f (aBol dVal . get Bool ean()) {

. . .

}

}

This examples continues the first one by working on the
paragraph object we have found by iterating through the text
document.

Again, we get an XEnumerationAccess from our object, this
time from our paragraph. And we create an enumeration
from it.

This enumeration enumerates text portions within the
paragraph, A text portion is a special kind of TextRange
which has the same attributes like font etc. If, for example,
all attributes within a paragraph were the same, just one
single word in the middle was in bold, we would have three
text portions in this paragraph: one with non−bold, one with
bold and another one with bold characters.

In this example, we get exactly this bold attribute from the
text portion, and if it is set, we execute some special code.

REFERENCES

1. http://api.openoffice.org
2. http://udk.openoffice.org

Sun Microsystems Confidential and Propr ietary Information− Internal Use Only
5

