
1

OODT Grid Services
over HTTP

Sean Kelly
2005.7.11

2

Overview

• Old RPC-based approach
• Web grid

– Deploying

– Configuring
– Using

• Performance

3

OODT Services

• Historical implementation is procedural

• Remote procedure calls
– CORBA
– RMI

• Centralized naming registry

4

Procedural Architecture

5

RPC Benefits

• Familiar programming paradigm:
byte[] data = service.get(arg);
– “get” could be a remote method
– Looks like a local invocation

• Move servers without affecting clients
– Server registers under a name
– Clients check registry for server’s current

location

6

RPC Drawbacks

• Limit to argument/return value sizes
byte[] data = server.get(arg);
– What if returned data is a HiRISE image?
– What if the argument is large too?

• Arguments/return values must fit in
memory
– Programs can stream data over I/O ports
– But RPC cannot stream

7

Workaround?

• Modify the interface:
byte[] get(X arg, long offset, int size);
– Repeatedly call “get”
– Use various offsets and size
– Until you get the whole product

• Slow
– Slower than streaming

8

The Workaround

• Currently implemented for product service
• Profile service can still fail when large

numbers of profiles match
– And/or large profiles match

9

RPC Drawbacks

• Naming registry is a point of failure
– Even if servers are up and running, clients

cannot locate them

• Workaround
– Set up multiple registries

• Worth it?
– ERNE servers have moved 3 times in 3 years
– PDS servers have moved once in 3 years

10

Administrative Overhead

• Naming registry requires security policy
changes at multiple institutions
– Servers must make outgoing calls to registry,

as well as accept incoming requests

11

Firewalls

12

Server Manager

• Myche McAuley, Imaging Node, PDS:

“Look, I trust you, but the Server Manager
makes me darn nervous. Can’t you just
give me a WAR file?”

13

Motivation

• Saddening performance
• Constant administrative vigilance

• REST

14

Web Grid

• Provide profile and product service over
HTTP
– No central naming registry

• You need to know your service endpoints
– But they rarely change

– Streaming profiles and products
• As fast as HTTP can be

– Yet compatible
• On both server and client side

15

Why Web Grid?

• Web (HTTP) accessible
• Grid service

– We call OODT “grid” after all!

16

Web Grid

• No Server Manager
– Remote administration is an option

– Limited to updating profile/product handlers

• Packageable
– Deploy the raw WAR file
– Preconfigure the WAR file with selected

profile/product handlers

– Include the WAR file with a lightweight servlet
container

17

Getting Web Grid

• Download it from
http://oodt.jpl.nasa.gov/web-grid/

• Build it yourself:
cvs checkout web-grid
cd web-grid
maven war

• Deploy web-grid-1.1.0.war to your favorite
servlet container
– Then visit the deployed webapp

18

Tested Servlet Containers

• Tomcat 5.5.9
– Tomcat 5.5 is minimum requirement
– Will not work with 5.0 or 4

• Jetty 5.1.4
– Not tested with earlier Jetty containers

19

Making Generic Web Grid

• Compile, make the war, and rename it:
cd web-grid
maven war
mv target/web-grid-1.1.0.war target/test.war

• Why?
– So that URLs are just “/test” instead of “/web-grid-

1.1.0”

– Yes, you can override this in your servlet container
• But I’m in a hurry to finish these slides

20

Deploy the Webapp

Click!

21

Find the WAR file

Found!

22

Click Deploy

Click!

23

Visit the Webapp

Click!

24

Log In

25

Logging In

• Default password is “hanalei”
– You can customize that for pre-packaged

installations
– As well as every other setting

• All settings are saved in WEB-INF/config.xml
– That means that the webapp must be deployed

unpacked!

26

Changing the Password

27

Administrative Access Control

• Protected by password
• Can be allowed from local host only

– Browser must run on same host as servlet
container

• Can be allowed via HTTPS only
– Servlet container must support HTTPS

28

Administrative Access Control

29

Setting System Properties

• Many query handlers consult system
properties
– For database URLs, product directories, etc.

• Set System Properties via web interface
– Or pre-configure the WEB-INF/config.xml file

30

Adding a Property

31

Updating Properties

32

Setting Class Path

• Web grid includes basic OODT framework
– But no profile and product handlers

• You specify class path
– By listing “code bases”
– Code bases are URLs to JAR files

• Or to directories containing class files

• URLs
– Can be remote, not residing on server system

33

Specifying Code Bases

34

Pre-Packaged Code Bases

• Don’t specify them via the web
– Or in WEB-INF/config.xml

• Include them in WEB-INF/lib

35

Specifying Query Handlers

• Give class names to product and profile
handlers
– Or for pre-packaged releases, list them in WEB-

INF/config.xml

36

Specifying Handlers

37

Make Queries

• Profile Queries
– Use jpl.eda.profile.ProfileClient

– Object name = http://host/appname/prof

• Product Queries
– Use jpl.eda.product.ProductClient

– Object name = http://host/appname/prod

38

Or Use a Browser!

• Profile queries
– http://host/appname/prof?q=expr

– Response in always text/xml list of matching profiles
• Or empty <profiles/>

• Product queries
– http://host/appname/prod?q=expr

– Response is matching product
• Or 404 Not Found

– MIME type depends on product

39

Request Parameters

• The “q”
– DIS-style keyword query
– Web grid makes an XMLQuery out of it

• The “xmlq”
– A complete XMLQuery, in XML format

• If both are specified, xmlq is preferred

40

Pre-Packaged WARs

• To make a pre-packaged, pre-configured
WAR for a specific application:
– Extract web-grid-1.1.0.war
– Customize WEB-INF/config.xml
– Add JARs to WEB-INF/lib
– Customize welcome page index.html
– Package it up into a new WAR

• Example: see pds-web-ps in CVS

41

Performance

• System configuration
– Server: Power Mac 2.0GHz dual G5, Mac OS X

– Client: Mac Mini 1.42GHz G4, Mac OS X

– 100baseTX fast Ethernet

• Tested configurations
– RMI (default block size, 4096 bytes)

– RMI (10X block size, 40960 bytes)

– Web Grid under Tomcat 5.5.9

– Web Grid under Jetty 5.1.4

42

Performance

• Tested handlers: PDS File Query Handler
– Retrieve a DIRLIST1
– Retrieve a PDS_ZIPD of a small directory
– Retrieve a PDS_ZIPD_SIZE
– Extract a label
– Retrieve a large raw file

• Tested concurrency: 1, 2, 4, 8, 16, 32, … queries
at a time

• Time limit: 60 seconds for any one query to finish

43

Test Results

• Executive summary:
– Web Grid under Tomcat kicks butt
– Followed by Web Grid under Jetty

– Followed by RMI with 10X block size
– Followed by RMI with default block size

• (CORBA will always suck)

44

45

46

Recomendation

• Web Grid provides
– Higher reliability
– Better performance
– Less administration

• Deploy it
– For ERNE
– For PDS
– Everywhere

47

Summary

• Old RPC-based approach
• Web grid

– Deploying

– Configuring
– Using

• Performance

