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Overview

• Old RPC-based approach
• Web grid

– Deploying

– Configuring
– Using

• Performance
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OODT Services

• Historical implementation is procedural

• Remote procedure calls
– CORBA
– RMI

• Centralized naming registry
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Procedural Architecture
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RPC Benefits

• Familiar programming paradigm:
byte[] data = service.get(arg);
– “get” could be a remote method
– Looks like a local invocation

• Move servers without affecting clients
– Server registers under a name
– Clients check registry for server’s current

location
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RPC Drawbacks

• Limit to argument/return value sizes
byte[] data = server.get(arg);
– What if returned data is a HiRISE image?
– What if the argument is large too?

• Arguments/return values must fit in
memory
– Programs can stream data over I/O ports
– But RPC cannot stream
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Workaround?

• Modify the interface:
byte[] get(X arg, long offset, int size);
– Repeatedly call “get”
– Use various offsets and size
– Until you get the whole product

• Slow
– Slower than streaming
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The Workaround

• Currently implemented for product service
• Profile service can still fail when large

numbers of profiles match
– And/or large profiles match
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RPC Drawbacks

• Naming registry is a point of failure
– Even if servers are up and running, clients

cannot locate them

• Workaround
– Set up multiple registries

• Worth it?
– ERNE servers have moved 3 times in 3 years
– PDS servers have moved once in 3 years
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Administrative Overhead

• Naming registry requires security policy
changes at multiple institutions
– Servers must make outgoing calls to registry,

as well as accept incoming requests
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Firewalls
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Server Manager

• Myche McAuley, Imaging Node, PDS:

“Look, I trust you, but the Server Manager
makes me darn nervous.  Can’t you just
give me a WAR file?”
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Motivation

• Saddening performance
• Constant administrative vigilance

• REST



14

Web Grid

• Provide profile and product service over
HTTP
– No central naming registry

• You need to know your service endpoints
– But they rarely change

– Streaming profiles and products
• As fast as HTTP can be

– Yet compatible
• On both server and client side
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Why Web Grid?

• Web (HTTP) accessible
• Grid service

– We call OODT “grid” after all!
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Web Grid

• No Server Manager
– Remote administration is an option

– Limited to updating profile/product handlers

• Packageable
– Deploy the raw WAR file
– Preconfigure the WAR file with selected

profile/product handlers

– Include the WAR file with a lightweight servlet
container
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Getting Web Grid

• Download it from
http://oodt.jpl.nasa.gov/web-grid/

• Build it yourself:
cvs checkout web-grid
cd web-grid
maven war

• Deploy web-grid-1.1.0.war to your favorite
servlet container
– Then visit the deployed webapp
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Tested Servlet Containers

• Tomcat 5.5.9
– Tomcat 5.5 is minimum requirement
– Will not work with 5.0 or 4

• Jetty 5.1.4
– Not tested with earlier Jetty containers



19

Making Generic Web Grid

• Compile, make the war, and rename it:
cd web-grid
maven war
mv target/web-grid-1.1.0.war target/test.war

• Why?
– So that URLs are just “/test” instead of “/web-grid-

1.1.0”

– Yes, you can override this in your servlet container
• But I’m in a hurry to finish these slides
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Deploy the Webapp

Click!



21

Find the WAR file

Found!
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Click Deploy

Click!
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Visit the Webapp

Click!
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Log In
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Logging In

• Default password is “hanalei”
– You can customize that for pre-packaged

installations
– As well as every other setting

• All settings are saved in WEB-INF/config.xml
– That means that the webapp must be deployed

unpacked!
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Changing the Password
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Administrative Access Control

• Protected by password
• Can be allowed from local host only

– Browser must run on same host as servlet
container

• Can be allowed via HTTPS only
– Servlet container must support HTTPS
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Administrative Access Control
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Setting System Properties

• Many query handlers consult system
properties
– For database URLs, product directories, etc.

• Set System Properties via web interface
– Or pre-configure the WEB-INF/config.xml file
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Adding a Property
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Updating Properties



32

Setting Class Path

• Web grid includes basic OODT framework
– But no profile and product handlers

• You specify class path
– By listing “code bases”
– Code bases are URLs to JAR files

• Or to directories containing class files

• URLs
– Can be remote, not residing on server system
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Specifying Code Bases
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Pre-Packaged Code Bases

• Don’t specify them via the web
– Or in WEB-INF/config.xml

• Include them in WEB-INF/lib
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Specifying Query Handlers

• Give class names to product and profile
handlers
– Or for pre-packaged releases, list them in WEB-

INF/config.xml
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Specifying Handlers
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Make Queries

• Profile Queries
– Use jpl.eda.profile.ProfileClient

– Object name = http://host/appname/prof

• Product Queries
– Use jpl.eda.product.ProductClient

– Object name = http://host/appname/prod
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Or Use a Browser!

• Profile queries
– http://host/appname/prof?q=expr

– Response in always text/xml list of matching profiles
• Or empty <profiles/>

• Product queries
– http://host/appname/prod?q=expr

– Response is matching product
• Or 404 Not Found

– MIME type depends on product
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Request Parameters

• The “q”
– DIS-style keyword query
– Web grid makes an XMLQuery out of it

• The “xmlq”
– A complete XMLQuery, in XML format

• If both are specified, xmlq is preferred
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Pre-Packaged WARs

• To make a pre-packaged, pre-configured
WAR for a specific application:
– Extract web-grid-1.1.0.war
– Customize WEB-INF/config.xml
– Add JARs to WEB-INF/lib
– Customize welcome page index.html
– Package it up into a new WAR

• Example: see pds-web-ps in CVS
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Performance

• System configuration
– Server: Power Mac 2.0GHz dual G5, Mac OS X

– Client: Mac Mini 1.42GHz G4, Mac OS X

– 100baseTX fast Ethernet

• Tested configurations
– RMI (default block size, 4096 bytes)

– RMI (10X block size, 40960 bytes)

– Web Grid under Tomcat 5.5.9

– Web Grid under Jetty 5.1.4
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Performance

• Tested handlers: PDS File Query Handler
– Retrieve a DIRLIST1
– Retrieve a PDS_ZIPD of a small directory
– Retrieve a PDS_ZIPD_SIZE
– Extract a label
– Retrieve a large raw file

• Tested concurrency: 1, 2, 4, 8, 16, 32, … queries
at a time

• Time limit: 60 seconds for any one query to finish
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Test Results

• Executive summary:
– Web Grid under Tomcat kicks butt
– Followed by Web Grid under Jetty

– Followed by RMI with 10X block size
– Followed by RMI with default block size

• (CORBA will always suck)
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Recomendation

• Web Grid provides
– Higher reliability
– Better performance
– Less administration

• Deploy it
– For ERNE
– For PDS
– Everywhere
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Summary

• Old RPC-based approach
• Web grid

– Deploying

– Configuring
– Using

• Performance


