Twenty Newsgroups Classification Example
Introduction
The 20 newsgroups dataset is a collection of approximately 20,000
newsgroup documents, partitioned (nearly) evenly across 20 different
newsgroups. The 20 newsgroups collection has become a popular data set for
experiments in text applications of machine learning techniques, such as
text classification and text clustering. We will use the Mahout CBayes
classifier to create a model that would classify a new document into one of
the 20 newsgroups.
Prerequisites
- Mahout has been downloaded (instructions here)
- Maven is available
- Your environment has the following variables:
- HADOOP_HOME Environment variables refers to where Hadoop lives
- MAHOUT_HOME Environment variables refers to where Mahout lives
Instructions for running the example
-
If running Hadoop in cluster mode, start the hadoop daemons by executing the following commands:
$ cd $HADOOP_HOME/bin
$ ./start-all.sh
Otherwise:
$ export MAHOUT_LOCAL=true
-
In the trunk directory of Mahout, compile and install Mahout:
$ cd $MAHOUT_HOME
$ mvn -DskipTests clean install
-
Run the 20 newsgroups example script by executing:
$ ./examples/bin/classify-20newsgroups.sh
-
You will be prompted to select a classification method algorithm:
1. Complement Naive Bayes
2. Naive Bayes
3. Stochastic Gradient Descent
Select 1 and the the script will perform the following:
- Create a working directory for the dataset and all input/output.
- Download and extract the 20news-bydate.tar.gz from the 20 newsgroups dataset to the working directory.
- Convert the full 20 newsgroups dataset into a < Text, Text > SequenceFile.
- Convert and preprocesses the dataset into a < Text, VectorWritable > SequenceFile containing term frequencies for each document.
- Split the preprocessed dataset into training and testing sets.
- Train the classifier.
- Test the classifier.
Output should look something like:
=======================================================
Confusion Matrix
-------------------------------------------------------
a b c d e f g h i j k l m n o p q r s t <--Classified as
381 0 0 0 0 9 1 0 0 0 1 0 0 2 0 1 0 0 3 0 |398 a=rec.motorcycles
1 284 0 0 0 0 1 0 6 3 11 0 66 3 0 6 0 4 9 0 |395 b=comp.windows.x
2 0 339 2 0 3 5 1 0 0 0 0 1 1 12 1 7 0 2 0 |376 c=talk.politics.mideast
4 0 1 327 0 2 2 0 0 2 1 1 0 5 1 4 12 0 2 0 |364 d=talk.politics.guns
7 0 4 32 27 7 7 2 0 12 0 0 6 0 100 9 7 31 0 0 |251 e=talk.religion.misc
10 0 0 0 0 359 2 2 0 0 3 0 1 6 0 1 0 0 11 0 |396 f=rec.autos
0 0 0 0 0 1 383 9 1 0 0 0 0 0 0 0 0 3 0 0 |397 g=rec.sport.baseball
1 0 0 0 0 0 9 382 0 0 0 0 1 1 1 0 2 0 2 0 |399 h=rec.sport.hockey
2 0 0 0 0 4 3 0 330 4 4 0 5 12 0 0 2 0 12 7 |385 i=comp.sys.mac.hardware
0 3 0 0 0 0 1 0 0 368 0 0 10 4 1 3 2 0 2 0 |394 j=sci.space
0 0 0 0 0 3 1 0 27 2 291 0 11 25 0 0 1 0 13 18|392 k=comp.sys.ibm.pc.hardware
8 0 1 109 0 6 11 4 1 18 0 98 1 3 11 10 27 1 1 0 |310 l=talk.politics.misc
0 11 0 0 0 3 6 0 10 6 11 0 299 13 0 2 13 0 7 8 |389 m=comp.graphics
6 0 1 0 0 4 2 0 5 2 12 0 8 321 0 4 14 0 8 6 |393 n=sci.electronics
2 0 0 0 0 0 4 1 0 3 1 0 3 1 372 6 0 2 1 2 |398 o=soc.religion.christian
4 0 0 1 0 2 3 3 0 4 2 0 7 12 6 342 1 0 9 0 |396 p=sci.med
0 1 0 1 0 1 4 0 3 0 1 0 8 4 0 2 369 0 1 1 |396 q=sci.crypt
10 0 4 10 1 5 6 2 2 6 2 0 2 1 86 15 14 152 0 1 |319 r=alt.atheism
4 0 0 0 0 9 1 1 8 1 12 0 3 0 2 0 0 0 341 2 |390 s=misc.forsale
8 5 0 0 0 1 6 0 8 5 50 0 40 2 1 0 9 0 3 256|394 t=comp.os.ms-windows.misc
=======================================================
Statistics
-------------------------------------------------------
Kappa 0.8808
Accuracy 90.8596%
Reliability 86.3632%
Reliability (standard deviation) 0.2131
End to end commands to build a CBayes model for 20 newsgroups
The 20 newsgroups example script issues the following commands as outlined above. We can build a CBayes classifier from the command line by following the process in the script:
Be sure that MAHOUT_HOME/bin and HADOOP_HOME/bin are in your $PATH
-
Create a working directory for the dataset and all input/output.
$ export WORK_DIR=/tmp/mahout-work-${USER}
$ mkdir -p ${WORK_DIR}
-
Download and extract the 20news-bydate.tar.gz from the 20newsgroups dataset to the working directory.
$ curl http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
-o ${WORK_DIR}/20news-bydate.tar.gz
$ mkdir -p ${WORK_DIR}/20news-bydate
$ cd ${WORK_DIR}/20news-bydate && tar xzf ../20news-bydate.tar.gz && cd .. && cd ..
$ mkdir ${WORK_DIR}/20news-all
$ cp -R ${WORK_DIR}/20news-bydate/*/* ${WORK_DIR}/20news-all * If you're running on a Hadoop cluster:
$ hadoop dfs -put ${WORK_DIR}/20news-all ${WORK_DIR}/20news-all
-
Convert the full 20 newsgroups dataset into a < Text, Text > SequenceFile.
$ mahout seqdirectory
-i ${WORK_DIR}/20news-all
-o ${WORK_DIR}/20news-seq
-ow
-
Convert and preprocesses the dataset into a < Text, VectorWritable > SequenceFile containing term frequencies for each document.
$ mahout seq2sparse
-i ${WORK_DIR}/20news-seq
-o ${WORK_DIR}/20news-vectors
-lnorm
-nv
-wt tfidf If we wanted to use different parsing methods or transformations on the term frequency vectors we could supply different options here e.g.: -ng 2 for bigrams or -n 2 for L2 length normalization. See the [Creating vectors from text](http://mahout.apache.org/users/basics/creating-vectors-from-text.html) page for a list of all seq2sparse options.
-
Split the preprocessed dataset into training and testing sets.
$ mahout split
-i ${WORK_DIR}/20news-vectors/tfidf-vectors
--trainingOutput ${WORK_DIR}/20news-train-vectors
--testOutput ${WORK_DIR}/20news-test-vectors
--randomSelectionPct 40
--overwrite --sequenceFiles -xm sequential
-
Train the classifier.
$ mahout trainnb
-i ${WORK_DIR}/20news-train-vectors
-el
-o ${WORK_DIR}/model
-li ${WORK_DIR}/labelindex
-ow
-c
-
Test the classifier.
$ mahout testnb
-i ${WORK_DIR}/20news-test-vectors
-m ${WORK_DIR}/model
-l ${WORK_DIR}/labelindex
-ow
-o ${WORK_DIR}/20news-testing
-c