# Distributed Stochastic Singular Value Decomposition ## Intro Mahout has a distributed implementation of Stochastic Singular Value Decomposition [1] using the parallelization strategy comprehensively defined in Nathan Halko's dissertation ["Randomized methods for computing low-rank approximations of matrices"](http://amath.colorado.edu/faculty/martinss/Pubs/2012_halko_dissertation.pdf) [2]. ## Modified SSVD Algorithm Given an `\(m\times n\)` matrix `\(\mathbf{A}\)`, a target rank `\(k\in\mathbb{N}_{1}\)` , an oversampling parameter `\(p\in\mathbb{N}_{1}\)`, and the number of additional power iterations `\(q\in\mathbb{N}_{0}\)`, this procedure computes an `\(m\times\left(k+p\right)\)` SVD `\(\mathbf{A\approx U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\)`: 1. Create seed for random `\(n\times\left(k+p\right)\)` matrix `\(\boldsymbol{\Omega}\)`. The seed defines matrix `\(\mathbf{\Omega}\)` using Gaussian unit vectors per one of suggestions in [Halko, Martinsson, Tropp]. 2. `\(\mathbf{Y=A\boldsymbol{\Omega}},\,\mathbf{Y}\in\mathbb{R}^{m\times\left(k+p\right)}\)` 3. Column-orthonormalize `\(\mathbf{Y}\rightarrow\mathbf{Q}\)` by computing thin decomposition `\(\mathbf{Y}=\mathbf{Q}\mathbf{R}\)`. Also, `\(\mathbf{Q}\in\mathbb{R}^{m\times\left(k+p\right)},\,\mathbf{R}\in\mathbb{R}^{\left(k+p\right)\times\left(k+p\right)}\)`; denoted as `\(\mathbf{Q}=\mbox{qr}\left(\mathbf{Y}\right).\mathbf{Q}\)` 4. `\(\mathbf{B}_{0}=\mathbf{Q}^{\top}\mathbf{A}:\,\,\mathbf{B}\in\mathbb{R}^{\left(k+p\right)\times n}\)`. 5. If `\(q>0\)` repeat: for `\(i=1..q\)`: `\(\mathbf{B}_{i}^{\top}=\mathbf{A}^{\top}\mbox{qr}\left(\mathbf{A}\mathbf{B}_{i-1}^{\top}\right).\mathbf{Q}\)` (power iterations step). 6. Compute Eigensolution of a small Hermitian `\(\mathbf{B}_{q}\mathbf{B}_{q}^{\top}=\mathbf{\hat{U}}\boldsymbol{\Lambda}\mathbf{\hat{U}}^{\top}\)`, `\(\mathbf{B}_{q}\mathbf{B}_{q}^{\top}\in\mathbb{R}^{\left(k+p\right)\times\left(k+p\right)}\)`. 7. Singular values `\(\mathbf{\boldsymbol{\Sigma}}=\boldsymbol{\Lambda}^{0.5}\)`, or, in other words, `\(s_{i}=\sqrt{\sigma_{i}}\)`. 8. If needed, compute `\(\mathbf{U}=\mathbf{Q}\hat{\mathbf{U}}\)`. 9. If needed, compute `\(\mathbf{V}=\mathbf{B}_{q}^{\top}\hat{\mathbf{U}}\boldsymbol{\Sigma}^{-1}\)`. Another way is `\(\mathbf{V}=\mathbf{A}^{\top}\mathbf{U}\boldsymbol{\Sigma}^{-1}\)`. ## Implementation Mahout `dssvd(...)` is implemented in the mahout `math-scala` algebraic optimizer which translates Mahout's R-like linear algebra operators into a physical plan for both Spark and H2O distributed engines. def dssvd[K: ClassTag](drmA: DrmLike[K], k: Int, p: Int = 15, q: Int = 0): (DrmLike[K], DrmLike[Int], Vector) = { val drmAcp = drmA.checkpoint() val m = drmAcp.nrow val n = drmAcp.ncol assert(k <= (m min n), "k cannot be greater than smaller of m, n.") val pfxed = safeToNonNegInt((m min n) - k min p) // Actual decomposition rank val r = k + pfxed // We represent Omega by its seed. val omegaSeed = RandomUtils.getRandom().nextInt() // Compute Y = A*Omega. var drmY = drmAcp.mapBlock(ncol = r) { case (keys, blockA) => val blockY = blockA %*% Matrices.symmetricUniformView(n, r, omegaSeed) keys -> blockY } var drmQ = dqrThin(drmY.checkpoint())._1 // Checkpoint Q if last iteration if (q == 0) drmQ = drmQ.checkpoint() var drmBt = drmAcp.t %*% drmQ // Checkpoint B' if last iteration if (q == 0) drmBt = drmBt.checkpoint() for (i <- 0 until q) { drmY = drmAcp %*% drmBt drmQ = dqrThin(drmY.checkpoint())._1 // Checkpoint Q if last iteration if (i == q - 1) drmQ = drmQ.checkpoint() drmBt = drmAcp.t %*% drmQ // Checkpoint B' if last iteration if (i == q - 1) drmBt = drmBt.checkpoint() } val (inCoreUHat, d) = eigen(drmBt.t %*% drmBt) val s = d.sqrt // Since neither drmU nor drmV are actually computed until actually used // we don't need the flags instructing compute (or not compute) either of the U,V outputs val drmU = drmQ %*% inCoreUHat val drmV = drmBt %*% (inCoreUHat %*%: diagv(1 /: s)) (drmU(::, 0 until k), drmV(::, 0 until k), s(0 until k)) } Note: As a side effect of checkpointing, U and V values are returned as logical operators (i.e. they are neither checkpointed nor computed). Therefore there is no physical work actually done to compute `\(\mathbf{U}\)` or `\(\mathbf{V}\)` until they are used in a subsequent expression. ## Usage The scala `dssvd(...)` method can easily be called in any Spark or H2O application built with the `math-scala` library and the corresponding `Spark` or `H2O` engine module as follows: import org.apache.mahout.math._ import decompositions._ import drm._ val(drmU, drmV, s) = dssvd(drma, k = 40, q = 1) ## References [1]: [Mahout Scala and Mahout Spark Bindings for Linear Algebra Subroutines](http://mahout.apache.org/users/sparkbindings/ScalaSparkBindings.pdf) [2]: [Randomized methods for computing low-rank approximations of matrices](http://amath.colorado.edu/faculty/martinss/Pubs/2012_halko_dissertation.pdf) [2]: [Halko, Martinsson, Tropp](http://arxiv.org/abs/0909.4061) [3]: [Mahout Spark and Scala Bindings](http://mahout.apache.org/users/sparkbindings/home.html)