Distributed Stochastic PCA
Intro
Mahout has a distributed implementation of Stochastic PCA1. This algorithm computes the exact equivalent of Mahout’s dssvd(\(\mathbf{A-1\mu^\top}\)
) by modifying the dssvd
algorithm so as to avoid forming \(\mathbf{A-1\mu^\top}\)
, which would densify a sparse input. Thus, it is suitable for work with both dense and sparse inputs.
Algorithm
Given an m \(\times\)
n matrix \(\mathbf{A}\)
, a target rank k, and an oversampling parameter p, this procedure computes a k-rank PCA by finding the unknowns in \(\mathbf{A−1\mu^\top \approx U\Sigma V^\top}\)
:
- Create seed for random n
\(\times\)
(k+p) matrix \(\Omega\)
.
\(\mathbf{s_\Omega \leftarrow \Omega^\top \mu}\)
.
\(\mathbf{Y_0 \leftarrow A\Omega − 1 {s_\Omega}^\top, Y \in \mathbb{R}^{m\times(k+p)}}\)
.
- Column-orthonormalize
\(\mathbf{Y_0} \rightarrow \mathbf{Q}\)
by computing thin decomposition \(\mathbf{Y_0} = \mathbf{QR}\)
. Also, \(\mathbf{Q}\in\mathbb{R}^{m\times(k+p)}, \mathbf{R}\in\mathbb{R}^{(k+p)\times(k+p)}\)
.
\(\mathbf{s_Q \leftarrow Q^\top 1}\)
.
\(\mathbf{B_0 \leftarrow Q^\top A: B \in \mathbb{R}^{(k+p)\times n}}\)
.
\(\mathbf{s_B \leftarrow {B_0}^\top \mu}\)
.
- For i in 1..q repeat (power iterations):
- For j in 1..n apply
\(\mathbf{(B_{i−1})_{∗j} \leftarrow (B_{i−1})_{∗j}−\mu_j s_Q}\)
.
\(\mathbf{Y_i \leftarrow A{B_{i−1}}^\top−1(s_B−\mu^\top \mu s_Q)^\top}\)
.
- Column-orthonormalize
\(\mathbf{Y_i} \rightarrow \mathbf{Q}\)
by computing thin decomposition \(\mathbf{Y_i = QR}\)
.
\(\mathbf{s_Q \leftarrow Q^\top 1}\)
.
\(\mathbf{B_i \leftarrow Q^\top A}\)
.
\(\mathbf{s_B \leftarrow {B_i}^\top \mu}\)
.
- Let
\(\mathbf{C \triangleq s_Q {s_B}^\top}\)
. \(\mathbf{M \leftarrow B_q {B_q}^\top − C − C^\top + \mu^\top \mu s_Q {s_Q}^\top}\)
.
- Compute an eigensolution of the small symmetric
\(\mathbf{M = \hat{U} \Lambda \hat{U}^\top: M \in \mathbb{R}^{(k+p)\times(k+p)}}\)
.
- The singular values
\(\Sigma = \Lambda^{\circ 0.5}\)
, or, in other words, \(\mathbf{\sigma_i= \sqrt{\lambda_i}}\)
.
- If needed, compute
\(\mathbf{U = Q\hat{U}}\)
.
- If needed, compute
\(\mathbf{V = B^\top \hat{U} \Sigma^{−1}}\)
.
- If needed, items converted to the PCA space can be computed as
\(\mathbf{U\Sigma}\)
.
Implementation
Mahout dspca(...)
is implemented in the mahout math-scala
algebraic optimizer which translates Mahout’s R-like linear algebra operators into a physical plan for both Spark and H2O distributed engines.
def dspca[K](drmA: DrmLike[K], k: Int, p: Int = 15, q: Int = 0):
(DrmLike[K], DrmLike[Int], Vector) = {
// Some mapBlock() calls need it
implicit val ktag = drmA.keyClassTag
val drmAcp = drmA.checkpoint()
implicit val ctx = drmAcp.context
val m = drmAcp.nrow
val n = drmAcp.ncol
assert(k <= (m min n), "k cannot be greater than smaller of m, n.")
val pfxed = safeToNonNegInt((m min n) - k min p)
// Actual decomposition rank
val r = k + pfxed
// Dataset mean
val mu = drmAcp.colMeans
val mtm = mu dot mu
// We represent Omega by its seed.
val omegaSeed = RandomUtils.getRandom().nextInt()
val omega = Matrices.symmetricUniformView(n, r, omegaSeed)
// This done in front in a single-threaded fashion for now. Even though it doesn't require any
// memory beyond that is required to keep xi around, it still might be parallelized to backs
// for significantly big n and r. TODO
val s_o = omega.t %*% mu
val bcastS_o = drmBroadcast(s_o)
val bcastMu = drmBroadcast(mu)
var drmY = drmAcp.mapBlock(ncol = r) {
case (keys, blockA) ⇒
val s_o:Vector = bcastS_o
val blockY = blockA %*% Matrices.symmetricUniformView(n, r, omegaSeed)
for (row ← 0 until blockY.nrow) blockY(row, ::) -= s_o
keys → blockY
}
// Checkpoint Y
.checkpoint()
var drmQ = dqrThin(drmY, checkRankDeficiency = false)._1.checkpoint()
var s_q = drmQ.colSums()
var bcastVarS_q = drmBroadcast(s_q)
// This actually should be optimized as identically partitioned map-side A'B since A and Q should
// still be identically partitioned.
var drmBt = (drmAcp.t %*% drmQ).checkpoint()
var s_b = (drmBt.t %*% mu).collect(::, 0)
var bcastVarS_b = drmBroadcast(s_b)
for (i ← 0 until q) {
// These closures don't seem to live well with outside-scope vars. This doesn't record closure
// attributes correctly. So we create additional set of vals for broadcast vars to properly
// create readonly closure attributes in this very scope.
val bcastS_q = bcastVarS_q
val bcastMuInner = bcastMu
// Fix Bt as B' -= xi cross s_q
drmBt = drmBt.mapBlock() {
case (keys, block) ⇒
val s_q: Vector = bcastS_q
val mu: Vector = bcastMuInner
keys.zipWithIndex.foreach {
case (key, idx) ⇒ block(idx, ::) -= s_q * mu(key)
}
keys → block
}
drmY.uncache()
drmQ.uncache()
val bCastSt_b = drmBroadcast(s_b -=: mtm * s_q)
drmY = (drmAcp %*% drmBt)
// Fix Y by subtracting st_b from each row of the AB'
.mapBlock() {
case (keys, block) ⇒
val st_b: Vector = bCastSt_b
block := { (_, c, v) ⇒ v - st_b(c) }
keys → block
}
// Checkpoint Y
.checkpoint()
drmQ = dqrThin(drmY, checkRankDeficiency = false)._1.checkpoint()
s_q = drmQ.colSums()
bcastVarS_q = drmBroadcast(s_q)
// This on the other hand should be inner-join-and-map A'B optimization since A and Q_i are not
// identically partitioned anymore.
drmBt = (drmAcp.t %*% drmQ).checkpoint()
s_b = (drmBt.t %*% mu).collect(::, 0)
bcastVarS_b = drmBroadcast(s_b)
}
val c = s_q cross s_b
val inCoreBBt = (drmBt.t %*% drmBt).checkpoint(CacheHint.NONE).collect -=:
c -=: c.t +=: mtm *=: (s_q cross s_q)
val (inCoreUHat, d) = eigen(inCoreBBt)
val s = d.sqrt
// Since neither drmU nor drmV are actually computed until actually used, we don't need the flags
// instructing compute (or not compute) either of the U,V outputs anymore. Neat, isn't it?
val drmU = drmQ %*% inCoreUHat
val drmV = drmBt %*% (inCoreUHat %*% diagv(1 / s))
(drmU(::, 0 until k), drmV(::, 0 until k), s(0 until k))
}
Usage
The scala dspca(...)
method can easily be called in any Spark, Flink, or H2O application built with the math-scala
library and the corresponding Spark
, Flink
, or H2O
engine module as follows:
import org.apache.mahout.math._
import decompositions._
import drm._
val (drmU, drmV, s) = dspca(drmA, k=200, q=1)
Note the parameter is optional and its default value is zero.
References