
Mahout Scala Bindings
and

Mahout Spark Bindings
for Linear Algebra Subroutines

Working Notes and Manual

Dmitriy Lyubimov∗

Abstract

In recent years significant effort was spent to produce semantically friendly environments for linear
algebra. Working with vector, matrix and tensor data structures as a single data type offers essential
qualities necessary for rapid prototyping of algebraically defined mathematical problems. The other
wanted quality is the convenience of the same environment as a programming language. Yet another one
is doing things at scale. Yet another highly desirable capability of the same environment is plotting and
visualization. Without bringing any detailed review of existing environments here, the author however
offers an opinion that while a lot of environments succeed in one or more of these aspects, none of them
however adequately addresses all of them at the same time and at a reasonable cost.

Unlike many other environments, Mahout-math Matrix model1 was targeting both dense and sparse
data structures from the very beginning both in type modeling and cost-based optimized computations.

In this work we are trying to bring semantic explicitness to Mahout’s in-core and out-of-core linear
algebra subroutines, while adding benefits of strong programming environment of scala, and captializing
on scalability benefits of Spark and GraphX.

Overview

Mahout Scala and Spark Bindings is a package aiming to provide a R-like look and feel to Mahout’s in-core
and out-of-core Spark-backed linear algebra. It is built in the image of R’s base package. So if you are
familiar with basic R matrix primitives, you should feel right at home.
There are, at the moment, 3 major types to be operated on: in-core vectors, in-core matrices (including
numerous specialized types), and distributed row matrices (DRM). SparkBindings expressions can mix in
all three types of things.
The manual is organised by giving DSL features by example. That means that capabilities are wider than
those shown, and may change behind the scenes as the work develops. However, the authors try to facilitate
and ecourage particular style given, and retain behind-the-scenes compatibility with the examples given.
§1 enumerates in-core DSL operators only. §2 describes operators involving combinations of DRM, in-
core vectors or matrices requiring out-of-core optimization and processing, as well conceptual notes about
checkpointing, caching, broadcasting and behind-the-scenes optimizing.
∗dlyubimov at apache dot org
1initially, an adaptation of Colt linear algebra library

1

CONTENTS CONTENTS

Contents

1 Mahout in-core algebraic Scala Bindings 4

1.1 Imports . 4

1.2 Inline initialization . 4

1.3 Slicing and Assigning . 5

1.4 BLAS-like operations . 6

1.5 Decompositions . 8

Cholesky decompositon . 8

SVD . 8

EigenDecomposition . 8

QR decomposition . 8

Rank . 8

In-core SSVD . 9

Solving linear equation systems and matrix inversion 9

1.6 Misc . 9

1.7 Random matrices . 9

1.7.1 Functional matrix views. 9

1.7.2 U (0, 1) random matrix view . 10

1.7.3 U (−1, 1) random matrix view . 10

1.7.4 Univariate N (0, 1) matrix view . 10

1.8 Iterators . 10

1.8.1 Iterating over rows in a matrix . 10

1.8.2 Iterating over non-zero and all elements of a vector or matrix 10

1.9 Bringing it all together: in-core SSVD . 10

1.10 Stochastic PCA . 11

1.11 Pitfalls . 12

2 Out-of-core linalg bindings 13

2.1 Initializing Mahout/Spark context . 13

2.2 Recommended imports for Scala & Spark Bindings . 13

2.3 DRM Persistence operators . 14

2.3.1 Loading DRM off HDFS . 14

2.3.2 Parallelizing from an in-core matrix . 14

2.3.3 Empty DRM . 14

2.3.4 Collecting to driver’s jvm in-core . 14

2

CONTENTS CONTENTS

2.3.5 Collecting to HDFS . 15

2.4 Logical algebraic operators on DRM matrices . 15

Optimizer actions. 15

Computational actions. 16

Caching in Spark’s Block Manager. 16

2.4.1 Transposition . 16

2.4.2 Elementwise +, -, *, / . 17

2.4.3 Matrix-matrix multiplication %*% . 17

2.4.4 Matrix-vector multiplication %*% . 18

2.4.5 Matrix-scalar +,-,*,/ . 18

2.5 Slicing . 18

2.6 Stitching (cbind and rbind) . 19

2.7 Custom pipelines on blocks . 19

2.8 Doing something completely custom . 20

2.9 Broadcasting vectors and matrices to closures. 20

2.10 Computations providing ad-hoc summaries . 21

2.10.1 nrow, ncol . 21

2.10.2 colSums, colMeans . 21

2.10.3 rowMeans, rowSums . 22

2.10.4 Matrix norm . 22

2.11 Distributed Decompositions . 22

2.11.1 Imports for decompositions package . 22

2.11.2 Distributed thin QR . 22

2.11.3 Distributed Stochastic SVD . 23

2.11.4 Distributed Stochastic PCA . 25

2.11.5 Distributed regularized ALS . 25

2.12 Adjusting parallelism of computations . 25

2.13 Mahout shell for Spark . 26

3 Optimizer notes 27

3.1 Physical operators . 27

3.2 Tracking the partitioning . 27

3.3 Tracking the DRM row key values and their types . 27

4 Notations 28

3

1 MAHOUT IN-CORE ALGEBRAIC SCALA BINDINGS

1 Mahout in-core algebraic Scala Bindings2

In-core DSL is hardly much more than just a syntactic sugar over org.apache.mahout.math.Matrix(Vec-
tor) trait implementations. As such, all originally implemented operation signatures of Mahout are also
retained.

1.1 Imports

The following two scala imports are typically used to enable Mahout Scala DSL bindings for Linear Algebra:

import org.apache.mahout.math._
import scalabindings._
import RLikeOps._

Another option is to use “matlab like” dialect by doing

import MatlabLikeOps._

However, Matlab-like DSL dialect adherence to original Matlab dialect is far less optimal that R dialect due
to the specifics of operator support in scala, so we just will limit ourselves to R-like dialect here.

1.2 Inline initialization

Dense vectors

val denseVec1: Vector = (1.0, 1.1, 1.2)
val denseVec2 = dvec(1, 0, 1.1, 1.2)

Sparse vectors

val sparseVec = svec((5 -> 1) :: (10 -> 2.0) :: Nil)
val sparseVec2: Vector = (5 -> 1.0) :: (10 -> 2.0) :: Nil

matrix inline initialization, either dense or sparse, is always row-wise:

dense matrices :

val A = dense((1, 2, 3), (3, 4, 5))

sparse matrices

val A = sparse(

(1, 3) :: Nil,
(0, 2) :: (1, 2.5) :: Nil

2See link: original proposal.

4

http://weatheringthrutechdays.blogspot.com/2013/07/scala-dsl-for-mahout-in-core-linear.html

1.3 Slicing and Assigning 1 MAHOUT IN-CORE ALGEBRAIC SCALA BINDINGS

)

diagonal matrix with constant diagonal elements

diag(10, 3.5)

diagonal matrix with main diagonal backed by a vector

diagv((1, 2, 3, 4, 5))

Identity matrix

eye(10)

Obviously, direct initialization of any vector or matrix type in Mahout is still available with regular oeration
new.

1.3 Slicing and Assigning

geting vector element

val d = vec(5)

setting vector element

vec(5) = 3.0

getting matrix element

val d = m(3,5)

setting matrix element (setQuick() behind the scenes)

M(3,5) = 3.0

Getting matrix row or column

val rowVec = M(3, ::)
val colVec = M(::, 3)

Setting matrix row or column

M(3, ::) = (1, 2, 3)
M(::, 3) = (1, 2, 3)

thru vector assignment also works

5

1.4 BLAS-like operations 1 MAHOUT IN-CORE ALGEBRAIC SCALA BINDINGS

M(3, ::) := (1, 2, 3)
M(::, 3) := (1, 2, 3)

subslices of row or vector work too

a(0, 0 to 1) = (3, 5)

or with vector assignment

a(0, 0 to 1) := (3, 5)

matrix contiguous block as matrix, with assignment

// block
val B = A(2 to 3, 3 to 4)
// asignment to a block
A(0 to 1, 1 to 2) = dense((3, 2), (2, 3))

or thru the matrix assignment operator

A(0 to 1, 1 to 2) := dense((3, 2), (2, 3))

Assignment operator by copying between vectors or matrix

vec1 := vec2
M1 := M2

also works for matrix subindexing notations as per above

Assignment thru a function literal (matrix)

M := ((row, col, x) => if (row == col) 1 else 0)

for a vector, the same:

vec := ((index, x) => sqrt(x))

1.4 BLAS-like operations

plus/minus, either vector or matrix or numeric, with assignment or not

a + b
a - b
a + 5.0
a - 5.0

Hadamard (elementwise) product, either vector or matrix or numeric operands

6

1.4 BLAS-like operations 1 MAHOUT IN-CORE ALGEBRAIC SCALA BINDINGS

a * b
a * 5

same things with assignment, matrix, vector or numeric operands

a += b
a -= b
a += 5.0
a -= 5.0
a *= b
a *= 5

One nuance here is associativity rules in scala. E.g. 1/x in R (where x is vector or matrix) is elementwise
inverse operation and in scala realm would be expressed as

val xInv = 1 /: x

and R’s 5.0 - x would be

val x1 = 5.0 -: x

Even trickier and really probably not so obvious stuff :

a -=: b

assigns a - b to b (in-place) and returns b. Similarly for a /=: b or 1 /=: v.

(all assignment operations, including :=, return the assignee argument just like in C++)

dot product (vector operands)

a dot b

matrix /vector equivalency (or non-equivalency). Dangerous, exact equivalence is rarely useful, better use
norm comparisons with admission of small errors

a === b
a !== b

Matrix multiplication (matrix operands)

a %*% b

for matrices that explicitly support optimized right and left muliply (currently, diagonal matrices)

right-multiply (for symmetry, in fact same as %*%)

diag(5,5) :%*% b

7

1.5 Decompositions 1 MAHOUT IN-CORE ALGEBRAIC SCALA BINDINGS

optimized left multiply with a diagonal matrix:

A %*%: diag(5,5) # i.e. same as (diag(5,5) :%*% A.t) t

Second norm, vector or matrix argument:

a.norm

Finally, transpose

val Mt = M.t

Note: Transposition currently is handled via view, i.e. updating a transposed matrix will be updating the
original. Also computing something like X>X

val XtX = X.t %*% X

will not therefore incur any additional data copying.

1.5 Decompositions

All arguments in the following are matrices.

Cholesky decompositon (as an object of a CholeskyDecomposition class with all its operations)

val ch = chol(M)

SVD

val (U, V, s) = svd(M)

EigenDecomposition

val (V, d) = eigen(M)

QR decomposition

val (Q, R) = qr(M)

Rank Check for rank deficiency (runs rank-revealing QR)

M.isFullRank

8

1.6 Misc 1 MAHOUT IN-CORE ALGEBRAIC SCALA BINDINGS

In-core SSVD

val (U, V, s) = ssvd(A, k=50, p=15, q=1)

Solving linear equation systems and matrix inversion This is fully similar to R semantics. There
are three forms of invocation:

solve(A, B) // solves AX = B
solve(A, b) // solves Ax = b
solve(A) // computes inverse A−1

1.6 Misc

vector cardinality

a.length

matrix cardinality

m.nrow
m.ncol

means and sums

m.colSums
m.colMeans
m.rowSums
m.rowMeans

a copy-by-value (vector or matrix)

val b = a cloned

1.7 Random matrices

See org.apache.mahout.math.Matrices for up-to-date information

1.7.1 Functional matrix views.

On Mahout-math side (i.e. java side) there is a concept of a “functional view”. Java side has a type, IntInt-
Function. An argument of that functional type could be provided to constuct a (dense) matrix readonly view
via Matrices.functionalMatrixView(m, n, gf, denseLike). ‘gf‘ function is expected to be idempotent
(i.e. return the same matrix element for the same combination of indices. Specialization of the functional
views are used for a transposed matrix view, as well as the following random matrices views.

9

1.8 Iterators 1 MAHOUT IN-CORE ALGEBRAIC SCALA BINDINGS

1.7.2 U (0, 1) random matrix view

val inCoreA = Matrices.uniformView(m, n, seed)

1.7.3 U (−1, 1) random matrix view

val inCoreA = Matrices.symmetricUniformView(m, n, seed)

1.7.4 Univariate N (0, 1) matrix view

val inCoreA = Matrices.gaussianView(m, n, seed)

1.8 Iterators

Mahout-math already exposes a number of iterators. Scala code just needs to import collection.JavaConversions._
to enable implicit conversions to scala iterators.

import collection._
import JavaConversions._

1.8.1 Iterating over rows in a matrix

for (row <- m) {
... do something with row

}

1.8.2 Iterating over non-zero and all elements of a vector or matrix

Note that Vector.Element also has some implicit syntactic sure, e.g. to add 5.0 to every non-zero element
the following code may be used:

for (row <- m; el <- row.nonZero) el = 5.0 + el
... or
for (row <- m; el <- row.nonZero) el := 5.0 + el

Similarly, row.all produces iterator over all elements in a row (vector).

1.9 Bringing it all together: in-core SSVD

Just to illustrate semantic clarity, we will adduce a source for in-core SSVD code.

/**
* In-core SSVD algorithm.
*
* @param a input matrix A
* @param k request SSVD rank

10

1.10 Stochastic PCA 1 MAHOUT IN-CORE ALGEBRAIC SCALA BINDINGS

* @param p oversampling parameter
* @param q number of power iterations
* @return (U,V,s)
*/

def ssvd(a: Matrix, k: Int, p: Int = 15, q: Int = 0) = {
val m = a.nrow
val n = a.ncol
if (k > min(m, n))

throw new IllegalArgumentException(
"k cannot be greater than smaller of m,n")

val pfxed = min(p, min(m, n) - k)
// actual decomposition rank
val r = k + pfxed
val rnd = RandomUtils.getRandom
val omega = Matrices.symmetricUniformView(n, r, rnd.nextInt)
var y = a %*% omega
var yty = y.t %*% y
val at = a.t
var ch = chol(yty)
var bt = ch.solveRight(at %*% y)
// power iterations
for (i <- 0 until q) {

y = a %*% bt
yty = y.t %*% y
ch = chol(yty)
bt = ch.solveRight(at %*% y)

}
val bbt = bt.t %*% bt
val (uhat, d) = eigen(bbt)
val s = d.sqrt
val u = ch.solveRight(y) %*% uhat
val v = bt %*% (uhat %*%: diagv(1 /: s))
(u(::, 0 until k), v(::, 0 until k), s(0 until k))

}

1.10 Stochastic PCA
/**
* PCA based on SSVD that runs without forming an always-dense A-(colMeans(A)) input for SVD. This
* follows the solution outlined in MAHOUT-817. For in-core version it, for most part, is supposed
* to save some memory for sparse inputs by removing direct mean subtraction.<P>
*
* Hint: Usually one wants to use AV which is approsimately USigma, i.e.<code>u %*%: diagv(s)</code>.
* If retaining distances and orignal scaled variances not that important, the normalized PCA space
* is just U.
*
* Important: data points are considered to be rows.
*
* @param a input matrix A
* @param k request SSVD rank
* @param p oversampling parameter
* @param q number of power iterations
* @return (U,V,s)
*/

def spca(a:Matrix, k: Int, p: Int = 15, q: Int = 0)

11

1.11 Pitfalls 1 MAHOUT IN-CORE ALGEBRAIC SCALA BINDINGS

Stochastic PCA is a re-flow of MAHOUT-817 for in-core DSL. One usually needs output AV ≈ UΣ:

val (inCoreU, _, s) = spca(a = input, k = 30, q = 1)
val uSigma = inCoreU %*%: diagv(s)

1.11 Pitfalls

This one the people who are accustomed to writing R linear algebra will probably find quite easy to fall into.
R has a nice property, a copy-on-write, so all variables actually appear to act as no-side-effects scalar-like
values and all assignment appear to be by value. Since scala always assigns by reference (except for AnyVal
types which are assigned by value), it is easy to fall prey to the following side effect modifications

val m1 = m
m1 += 5.0 // modifies m as well

A fix is as follows:

val m1 = m cloned
m1 += 5.0 // now m is intact

12

2 OUT-OF-CORE LINALG BINDINGS

2 Out-of-core linalg bindings

The subject of this section are solely operations applicable to Mahout’s DRM (distributed row matrix).

Spark Binding’s DRM persistence to HDFS is compatible with all Mahout’s MR algorithms
using DRM such as ssvd or seq2sparse. 3

Once loaded into spark, DRM is represented by Spark partitions initially consisting of handful of row vectors.

Here and on, I will denote spark-backed DRM references as A, whereas in-core matrices as inCoreA.

2.1 Initializing Mahout/Spark context

Many (if not all) operations will require a Spark context. Spark context can be passed in two ways: (1) as
an implicit value; and as passed down from a parent source (DRM’s backing RDD).

To initialize Mahout/Spark session, just create an implicit value of a specifically prepped Spark context:

implicit val mahoutCtx = mahoutSparkContext(

masterUrl = "local",
appName = "MahoutLocalContext"
// [,...]

)

Parameter masterUrl points to Spark’s master. Note that Mahout expects either MAHOUT_HOME envi-
ronment or -Dmahout.home=... java system variable to point to Mahout home directory in order to collect
relevant jars for the Spark sessions.

From there on, as long as Mahout-initialized Spark context is exposed thru implicit variable, attribute or
paremeter, there’s no need to specify it explicitly for any of the successive operations.

Note that as of the time of this writing Spark sessions cannot coexist in the same jvm, even though a single
spark session is reentrant and can handle requests from more than one thread.

2.2 Recommended imports for Scala & Spark Bindings

For seamless in-core & distributed algebraic DSL:

// Import matrix, vector types, etc.
import org.apache.mahout.math._

// Import scala bindings operations
import scalabindings._

// Enable R-like dialect in scala bindings
import RLikeOps._

3This statement needs comprehensive QA throughout; but intent is true.

13

2.3 DRM Persistence operators 2 OUT-OF-CORE LINALG BINDINGS

// Import distributed matrix apis
import drm._

// Import R-like distributed dialect
import RLikeDrmOps._

// Those are needed for Spark-specific
// operations such as context creation.
// 100% engine-agnostic code does not
// require these.
import org.apache.mahout.sparkbindings._

// A good idea when working with mixed
// scala/java iterators and collections
import collection._
import JavaConversions._

All subsequent snippets assume the relevant packages are imported.

Mahout shell does all these imports automatically.

2.3 DRM Persistence operators

2.3.1 Loading DRM off HDFS

val A = drmFromHDFS(path = hdfsPath)

2.3.2 Parallelizing from an in-core matrix

val inCoreA = dense((1, 2, 3), (3, 4, 5))
val A = drmParallelize(inCoreA)

2.3.3 Empty DRM

val A = drmParallelizeEmpty(100, 50)

2.3.4 Collecting to driver’s jvm in-core

val inCoreA = A.collect()

Warning: Collection of distributed matrices is now happening implicitly whenever conversion to in-core
(o.a.m.math.Matrix) type is required:

val inCoreA:Matrix = ...
val drmB:DrmLike[Int] = ..
val inCoreC:Matrix = inCoreA %*% drmB
// implied: (incoreA %*%) drmB).collect

14

2.4 Logical algebraic operators on DRM matrices 2 OUT-OF-CORE LINALG BINDINGS

2.3.5 Collecting to HDFS

Collect Spark-backed DRM to HDFS in Mahout’s DRM format files:4

A.writeDRM(path = hdfsPath)

2.4 Logical algebraic operators on DRM matrices

We will define a logical set of operators that are familiar to users of R, which are elementwise +, -, *, / as
well as matrix multiplication %*% and transposition. General rule is that we try to do a subset of the same
things found in the in-core DSL. In particular, since all distributed matrices are immutable, there are no
assignment versions (e.g. A += B).

Logical operators comprised into expression do not however mean that concrete physical plan is materialized
until the expression is “checkpointed” – directly or indirectly. In terms of Spark, this is called “action”.

Unlike with Spark, we want to discern two types of “actions”: optimizer action and computational action.

Optimizer actions. Optimizer action triggers materialization of a physical plan (concrete RDD graph
with result marked for Spark caching), backed by CheckpointedDRM. CheckpointedDRM servies as a cut-
off boundary for optmizer action. Optimizer action does not trigger actual computation of result data set.
Right now optimizer action is triggered explicitly by DRMLike#checkpoint().

Let consider two examples:

val A = drmParallelize (...)
val B = drmParallelize (...)
val C = A %*% B.t
val D = C.t
val E = C.t %*% C
D.writeDRM(..path..)
E.writeDRM(..path..)

In this example, optimizer optimizes separately 2 pipelines: D = BA> and E =
(
AB>

)> (
AB>

)
using

same matrices A and B as root of both computations. Now let’s consider the following modified example:

val A = drmParallelize (...)
val B = drmParallelize (...)
val C = (A %*% B.t).checkpoint
val D = C.t
val E = C.t %*% C
D.writeDRM(..path..)
E.writeDRM(..path..)

In this case, which is functionally equivalent to the previous one, the optimizer considers 3 separate pipelines:
C = AB>, D = C> and E = C>C while caching optimized plan and intermediate result for C into the Spark
cache. Introducing checkpoints may improve “wall time” (since matrices D and E will be triggered for action

4if you see an error here along the lines “no implicit view available from A => org.apache.hadoop.io.Writable” most likely
you need just to import SparkContext._.

15

2.4 Logical algebraic operators on DRM matrices 2 OUT-OF-CORE LINALG BINDINGS

at different time and optimizer wouldn’t be able to consider computational graph that includes both at the
same time). But even in the first example optimizer will be able to figure to optimize E =

(
AB>

)> (
AB>

)
as t_square

(
product

(
A, B>

))
pipeline, i.e. into only two sequential physical operators.

In either of the examples, nothing happens in the backend until a computational action is triggered for either
of E or D.

It doesn’t matter how many times checkpointing is called on a logical operator, same logical operator will
be optimized and set for caching policy only once.

Computational actions. Computational action leads to result being computed and (optionally?) placed
into Spark cache. Such actions will also lazily and implicitly trigger linalg optimizer checkpointing. Cur-
rently, computational actions include writeDrm(), collect(), blockify() and sometimes could also be triggered
implicitly by optimizer activity beyond current checkpoint cut-off (if checkpointed but not computed and
cached yet) to run some cost estimates necessary for the optimizer beyond checkpointing, potentially future
actions associated with DRM sub-blocking.

E.g. in the second example, running

E.writeDrm(path)

will trigger computational actions for E and, implicitly, for C.

All these rules follow the same patterns as for the in-core arguments.

Caching in Spark’s Block Manager. Every checkpoint can be, and by default, is, pushed into Spark’s
memory block manager. Default policy is MEMORY_ONLY, but storage level can be specified explicitly
as a parameter to checkpoint() call. Actual push of data to memory block manager happens no sooner that
actual partition computation occurs for the first time (i.e. at the first occurrence of a computational action
of the pipeline involving the result in question).5 Checkpointed DRMs may later be explicitly uncached from
block manager (asynchronously) if desired, e.g.:

val drmA = (/*..drm expression..*/).checkpoint(CacheHint.MEMORY_AND_DISK)
... some computational actions involving drmA
... drmA is not needed anymore
drmA.uncache()

If argument is not cached by the time the uncache() call has occurred, nothing of substance happens.

2.4.1 Transposition

A.t
5See Spark manual to understand interaction with Block Manager and storage levels in detail.

16

2.4 Logical algebraic operators on DRM matrices 2 OUT-OF-CORE LINALG BINDINGS

2.4.2 Elementwise +, -, *, /

M = A + B

M = A−B

M = A ◦B (Hadamard)

M =


a11
b11

a12
b12

· · · a1n

b1n...
...

am1
bm1

am2
bm2

· · · amn

bmn

 (elementwise division)

All this operations require identical geometry of operands and row keying types that will be asserted at
optmizer checkpointing time.

A + B
A - B
A * B
A / B

Binary operators involving in-core argument (only on int-keyed DRMs)

A + inCoreB
A - inCoreB
A * inCoreB
A / inCoreB
A :+ inCoreB
A :- inCoreB
A :* inCoreB
A :/ inCoreB
inCoreA +: B
inCoreA -: B
inCoreA *: B
inCoreA /: B

Note spark associativity change (e.g. inCoreA +: B means B.leftMultiply(A), just like with both in-core
arguments). Important thing here is that whenever operator arguments include both in-core and out-
of-core arguments, operator can only be associated with the out-of-core argument to support distributed
implementation.

2.4.3 Matrix-matrix multiplication %*%

M = AB

A %*% B
A %*% inCoreB
A %*% inCoreDiagonal (i.e. things like A %*% diagv(d))
A :%*% inCoreB
inCoreA %*%: B

17

2.5 Slicing 2 OUT-OF-CORE LINALG BINDINGS

Same as above, when both in-core and out-of-core argumetns used, associativity of operation must follow
the out-of-core (DRM) argument in the expression.

2.4.4 Matrix-vector multiplication %*%

Currently, we support a right-multiply product of a DRM and a in-core Vector (Ax), resulting in a distributed
single-column DRM, which then of course could be collected in front (usually that’s the desired outcome):

val Ax = A %*% x
val inCoreX = Ax.collect(::,0)

There are 2 physical operators associated with this: Ax and A>x.

2.4.5 Matrix-scalar +,-,*,/

In this context, matrix-scalar operations mean element-wise operatios of every matrix element and a scalar.

A + 5.0
A - 5.0
A :- 5.0
5.0 -: A
A * 5.0
A / 5.0
5.0 /: A

Note that 5.0 -: A means mij = 5− aij and 5.0 /: A means mij = 5
aij

for all elements of the result.

2.5 Slicing

Slicing (without assigning) is supported mostly identically to in-core slicing. Slicing row or range is of Range
scala type, which typically can be inlined as x to y or x until y. All-range is given by ::.

General slice

A(100 to 200, 100 to 200)

Horizontal block

A(::, 100 to 200)

Vertical block

A(100 to 200, ::)

Note: if row range is not all-range (::) then the DRM must be Int-keyed. Row slicing in general case is
not supported for key types other than Int.

18

2.6 Stitching (cbind and rbind) 2 OUT-OF-CORE LINALG BINDINGS

2.6 Stitching (cbind and rbind)

We can stitch two matrices side by side (cbind R semantics) :

val drmAnextToB = drmA cbind drmB

Or, which is the same in Scala,

val drmAnextToB = drmA.cbind(drmB)

Obviously, our variation of cbind is accepting only two arguments, but we can stitch more matrices by
chaining the operation.
Analogously, vertical distributed concatenation is available since MAHOUT-1596 via rbind.

2.7 Custom pipelines on blocks

Pretty often there’s a need to do something with the matrix expressed as blocks. Some physical operators are
also more effective once working with matrix blocks rather than individual rows. Internally, Mahout’s matrix
pipeline (lazily) blockifies every data partition into BlockifiedDrmTuple blocks whenever first physical
operator requiring blocking is encountered. After that, any row-wise physical operators work on row vector
views of the blocks.
Here is definition for DRM block tuple type:

/** Drm block-wise tuple:

Array of row keys and the matrix block. */

type BlockifiedDrmTuple[K] = (Array[K], _ <: Matrix)

DRM operator mapBlock provides transformational access to the vertical blockified tuples of the matrix.
(Current implementation also guarantees that there’s exactly one block per map task).
Here is unit test that demonstrates use of mapBlock operator by producing A + 1.0:

val inCoreA = dense((1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6))
val A = drmParallelize(m = inCoreA, numPartitions = 2)
val B = A.mapBlock(/* Inherit width */) {

case (keys, block) => keys -> (block += 1.0)
}
val inCoreB = B.collect
val inCoreBControl = inCoreA + 1.0
println(inCoreB)
// Assert they are the same
(inCoreB - inCoreBControl).norm should be < 1E-10

The constrain is that operator mapBlock should not attempt to change the height of the block, in order to
provide correct total matrix row count estimate to optimizer after application of the operator. MapBlock
operator may change width (i.e. column count) of the matrix; if it does so, it needs to supply it to first ncol
parameter of the mapBlock(newNCol) call. Otherwise, it is assumed operator has inherited the width of the
original matrix. The geometry of the block returned is asserted at run time, as geometry is vitally important
for the coherence of linear operators.
Another note is that it is ok to return a reference to a modified same in-core block. This is actually
recommended whenever possible (note the += operator in the example) to avoid matrix copying.

19

2.8 Doing something completely custom 2 OUT-OF-CORE LINALG BINDINGS

2.8 Doing something completely custom

If flexibility of Drm api is not enough, it is always possible to exit out of opimizer-based algebra pipeline
into pure spark RDD environment. The exit is possible at optimizer checkpoints, which are presented by
CheckpointedDrmBase[K] trait. This trait has an rdd:DrmRdd[K] method, which returns a row-wise RDD
of DrmTuple[K] type.

The row-wise tuple types and RDDs are defined as following:

/** Drm row-wise tuple */
type DrmTuple[K] = (K, Vector)
/** Row-wise organized DRM rdd type */
type DrmRdd[K] = RDD[DrmTuple[K]]

(type Vector here is org.apache.mahout.math.Vector).

E.g.:

val myRdd = (A %*% B).checkpoint().rdd
...

Similarly, an Rdd conforming to a type of DrmRdd, can be re-wrapped into optimizer checkpoint via

val rdd:DrmRdd[K] = ... //
val A = drmWrap(rdd = rdd, nrow = 50000, ncol = 100)
... // use A in a DRM pipeline

Parameters ncol and nrow (geometry) are optional. If not supplied, they will be recomputed off cached
dataset. But if supplied, they must be accurate!

A note about serialization: the Spark bindings for Mahout support serialization of Vector and Matrix types
(including their views and slices) via Kryo serialization. Hence, Spark context for Mahout is initialized
with kryo serializer for all objects. This is something to keep in mind (Vector and Matrix objects can be
broadcasted/collected, but there’s no way to revert to java-serialized-only support in spark session and use
Mahout objects at the same time). This generally should not be a problem in Spark 0.9 since there’s a kryo
serialization back for practically anything of interest in the twitter/chill that is used by Spark since 0.8.

2.9 Broadcasting vectors and matrices to closures.

Generally, one can create and use one-way closure attributes and use them at backend, e.g we can implement
scalar matrix multiplication by a variable factor the following way:

val factor:Int = ...
val drm2 = drm1.mapBlock() {

case (keys, block) => block *= factor
keys -> block

}

20

2.10 Computations providing ad-hoc summaries 2 OUT-OF-CORE LINALG BINDINGS

As we can see, even though factor is initialized in front end, it can be easily used at backend closures running
on every matrix vertical block in parallel. Very easy and elegant.

A slight wrinkle with that is, closure attributes must be java-serializable. This is, as it stands, not currently
the case with in-core matrices and vectors. And even if they were, java serialization would be less compact
on the wire than a custom serialization that Mahout in-core matrices use. E.g. the following fragment,
implementing a vector subtraction from every matrix row, will fail with NotSerializableException:

val v:Vector = ...
val drm2 = drm1.mapBlock() {

case (keys, block) =>
for (row <- 0 until block.nrow) block(row,::) -= v
keys -> block

}

Spark and similar execution backends supports “broadcast” feature which ensures that a broadcast variable
is available to all backend running code. We abstract that away too. The fix to the previous fragment would
be:

val v:Vector = ...
val bcastV = drmBroadcast(v)
val drm2 = drm1.mapBlock() {

case (keys, block) =>
for (row <- 0 until block.nrow) block(row,::) -= bcastV
keys -> block

}

2.10 Computations providing ad-hoc summaries

There’s a number of operators that do not return a new distributed matrix. As such, some of them may or
will trigger computational action. This is something to keep in mind.

2.10.1 nrow, ncol

For example, matrix geometry properties (nrow, ncol) will trigger a summary computation if the geometry
is not already inferred thru optimizer. If they do, they will checkpoint with storage level MEMORY_ONLY
automatically.

2.10.2 colSums, colMeans

val acs = A.colSums
val amean = A.colMeans

Those will always trigger a computational action. There’s no lazy behavior for these (vector properties are
considered to be too bulky to be a lazy property). I.e. if one calls colSums() n times, then back end will
actually recompute colMeans n times.

21

2.11 Distributed Decompositions 2 OUT-OF-CORE LINALG BINDINGS

2.10.3 rowMeans, rowSums

2.10.4 Matrix norm

val rmse = (A - U %*% V.t).norm / sqrt(A.nrow * A.ncol)

2.11 Distributed Decompositions

2.11.1 Imports for decompositions package

import org.apache.mahout.math._
...
import decompositions._

2.11.2 Distributed thin QR

For the classic QR decomposition of the form A = QR, A ∈ Rm×n, a distributed version is fairly easily
achieved if A is tall and thin such that A>A fits in memory, i.e. m is large, but n ≤∼ 5000. Under
such circumstances, only A and Q are distributed matrices, and A>A and R are in-core products. We
just compute in-core version of Cholesky decomposition in the form of LL> = A>A. After that we take
R = L> and Q = A

(
L>
)−1

. The latter is easily achieved by multiplying each vertical block of A by(
L>
)−1. (There’s no actual matrix inversion happening).

Corollary to this design are two facts: (1) rows of Q retain the same indexing type as rows of A (not
necessarily int-keyed); and (2) A and Q are identically partitioned. Therefore, A and Q subsequently can
be trivially zipped together if join of rows is needed (used in d-ssvd).

val (drmQ, inCoreR) = dqrThin(drmA)

The source of this method as of the time of this writing is extremely simple (probably too simple):

def dqrThin[K: ClassTag](A: DrmLike[K], checkRankDeficiency: Boolean = true):

(DrmLike[K], Matrix) = {

if (A.ncol > 5000)
log.warn("A is too fat. A’A must fit in memory and easily broadcasted.")

implicit val ctx = A.context

val AtA = (A.t %*% A).checkpoint()
val inCoreAtA = AtA.collect

if (log.isDebugEnabled) log.debug("A’A=\n%s\n".format(inCoreAtA))

val ch = chol(inCoreAtA)
val inCoreR = (ch.getL cloned) t

if (log.isDebugEnabled) log.debug("R=\n%s\n".format(inCoreR))

22

2.11 Distributed Decompositions 2 OUT-OF-CORE LINALG BINDINGS

if (checkRankDeficiency && !ch.isPositiveDefinite)
throw new IllegalArgumentException("R is rank-deficient.")

val bcastAtA = drmBroadcast(inCoreAtA)

// Unfortunately, I don’t think Cholesky decomposition is serializable to backend. So we re-
// decompose A’A in the backend again.

// Compute Q = A*inv(L’) -- we can do it blockwise.
val Q = A.mapBlock() {

case (keys, block) => keys -> chol(bcastAtA).solveRight(block)
}

Q -> inCoreR
}

Since we see that is navigated twice, it is recommended that it is checkpointed before calling this method to
avoid recomputation.

2.11.3 Distributed Stochastic SVD

Usage example:

val (drmU, drmV, s) = dssvd(drmA, k = 40, q = 1)

As a side effect of checkpointing, U and V values returned as logical operators (i.e they are neither check-
pointed nor computed). Therefore, there’s no physical work actually done to compute final U or V until
they are actually used in a subsequent expression. So unlike the SSVDSolver, this does not require additional
parameters to configure which set of product combinations is actually computed in the end. Neat, isn’t it.

Source (for those who likes counting lines):

/**
* Distributed Stochastic Singular Value decomposition algorithm.
*
* @param A input matrix A
* @param k request SSVD rank
* @param p oversampling parameter
* @param q number of power iterations
* @return (U,V,s). Note that U, V are non-checkpointed matrices

(i.e. one needs to actually use them
* e.g. save them to hdfs in order to trigger their computation.
*/

def dssvd[K: ClassTag](A: DrmLike[K], k: Int, p: Int = 15, q: Int = 0):
(DrmLike[K], DrmLike[Int], Vector) = {

val drmA = A.checkpoint()
val m = drmA.nrow
val n = drmA.ncol

23

2.11 Distributed Decompositions 2 OUT-OF-CORE LINALG BINDINGS

assert(k <= (m min n), "k cannot be greater than smaller of m, n.")

val pfxed = safeToNonNegInt((m min n) - k min p)

// Actual decomposition rank
val r = k + pfxed

// We represent Omega by its seed.
val omegaSeed = Random.nextInt()

// Compute Y = A*Omega.
var drmY = drmA.mapBlock(ncol = r) {

case (keys, blockA) =>
val blockY = blockA %*% Matrices.symmetricUniformView(blockA.ncol, r, omegaSeed)
keys -> blockY

}

var drmQ = dqrThin(drmY.checkpoint())._1

// Checkpoint Q if last iteration
if (q==0) drmQ = drmQ.checkpoint()

// This actually is optimized as identically
// partitioned map-side A’B since A and Q should
// still be identically partitioned.
var drmBt = drmA.t %*% drmQ

// Checkpoint B’ if last iteration
if (q==0) drmBt = drmBt.checkpoint()

for (i <- 1 to q) {
drmY = drmA %*% drmBt
drmQ = dqrThin(drmY.checkpoint())._1

// Checkpoint Q if last iteration
if (i == q) drmQ = drmQ.checkpoint()

drmBt = drmA.t %*% drmQ

// Checkpoint B’ if last iteration
if (i == q) drmBt = drmBt.checkpoint()

}
val inCoreBBt = (drmBt.t %*% drmBt).checkpoint(StorageLevel.NONE).collect
val (inCoreUHat, d) = eigen(inCoreBBt)
val s = d.sqrt
val drmU = drmQ %*% inCoreUHat
val drmV = drmBt %*% (inCoreUHat %*%: diagv(1 /: s))
(drmU(::, 0 until k), drmV(::, 0 until k), s(0 until k))

}

Done!

24

2.12 Adjusting parallelism of computations 2 OUT-OF-CORE LINALG BINDINGS

2.11.4 Distributed Stochastic PCA
/**
* Distributed Stochastic PCA decomposition algorithm. A logical reflow of the "SSVD-PCA options.pdf"
* document of the MAHOUT-817.
*
* @param A input matrix A
* @param k request SSVD rank
* @param p oversampling parameter
* @param q number of power iterations (hint: use either 0 or 1)
* @return (U,V,s). Note that U, V are non-checkpointed matrices (i.e. one needs to actually use them
* e.g. save them to hdfs in order to trigger their computation.
*/

def dspca[K: ClassTag](A: DrmLike[K], k: Int, p: Int = 15, q: Int = 0):
(DrmLike[K], DrmLike[Int], Vector) = <...>

Stochastic PCA is a re-flow of MAHOUT-817 for sparkbindings algebra. One usually needs output AV ≈
UΣ:

val (drmU, _, s) = dspca(a = drmA, k = 30, q = 1)
val drmUSigma = drmU %*% diagv(s)
...

2.11.5 Distributed regularized ALS

It is extremely easy now to alternate regularized ALS in distributed way: 6

for (i <- 0 until maxIterations) {
..
drmV = (drmAt %*% drmU %*% solve(drmU.t %*% drmU -: diag(lambda, k))).checkpoint()
drmU = (drmA %*% drmV %*% solve(drmV.t %*% drmV -: diag(lambda, k))).checkpoint()
..

}

Actual implementation is doing a tad more than just alternations, of course. To run convenience implemen-
tation of distributed ALS in Mahout (see scaladoc), use dals(...): 7

val (drmU, drmV, _) = dals(A, ...).toTuple

2.12 Adjusting parallelism of computations

Sometimes there’s a need to adjust parallelism of computations. For most part it happens when we want to
increase parallelism of computations. With Spark Bindings, parallelism value is construed as the number of
splits.

6Here, note that rightmost term of the expression
drmV.t %*% drmV -: diag(lambda, k)

is an in-core matrix, so expression drmV.t %*% drmV is computed in distributed way, but matrix subtraction and solving the
linear system solve(...) is performed in the front-end. This is because matrix subtraction is associated with right hand side
operand diag(lambda, k) which is an in-core matrix and requires an in-core left operand; so implicit matrix collection kicks in
before doing subtraction.
If we used just ‘-‘ then operation of subtraction would have been associated with a tiny but distributed matrix product V>V

and be carried in distributed way, which, given tiny size of the operands, would actually be just a waste of time communicating
to machine nodes.

7Code untested for performance at this point

25

2.13 Mahout shell for Spark 2 OUT-OF-CORE LINALG BINDINGS

First, minimum parallelism can be established by passing parMin parameter to drmFromHdfs() during load
from DFS.

Second, parallelism operators could be inserted into expressions.

drmA.par(min = 100)

will establish minimum parallelism for ougoing computations of drmA.

drmA.par(exact = 100)

will establish exact parallelism; and

drmA.par(auto = true)

will try to do engine-specific automatic parallelism adjustment (with Spark, it is based on current default
parallelism property for Spark). Auto parallelism will not decrease already established parallelism though.

2.13 Mahout shell for Spark

Use something like the following to run Mahout Spark shell:

MASTER=<spark-master-url> mahout/bin spark-shell

Assuming startup has completed successfully, all necessary imports are already done, and implicit instance
of DistributedContext is already created (sdc).

See simple.mscala for an example of test script/script invocation.

Prerequisites to run Mahout Spark shell:

• Spark is installed, compiled and SPARK_HOME is set. Spark version should be that of what Mahout
has been compiled with8.

• Mahout is compiled, and MAHOUT_HOME is set.

• Other usual Spark requirements (e.g. it is not easy, if possible at all, to run Spark shell from behind
NAT, etc.)

8as of time of this writing, spark-0.9.1

26

https://github.com/apache/mahout/blob/master/spark-shell/src/test/mahout/simple.mscala

3 OPTIMIZER NOTES

3 Optimizer notes

3.1 Physical operators

AB> This is using cartesian combination of vertical blocks of both sides.

A>B There are two implementations for this. If A and B are identically partitioned (which is tracked by
optimizer throughout), then this is computed by zip+combine. If not, then inner join+combine is used.

A> This requires int-keyed input only. A direct transposition operator.

A>A This operator compiles squared matrix with arbitrary row keys. Result is always int-keyed. There
are two different implementations here depending on whether n × n upper triangular matrix fits in
memory.

AB right-multiply where B is in-core. Broadcast for B is used in this map-block implementation.

... and some more less important. No time to list all.

3.2 Tracking the partitioning

Optimizer tracks identicity of partitioning of products. E.g. in SSVD for B> = A>Q the optimizer figures
A and Q are identically partitioned in 0-th iteration, whereas in power iterations they are not, so it picks
different physical operators in these cases.

3.3 Tracking the DRM row key values and their types

Optimizer automatically tracks non-integral row keys thoughout expression. E.g. dssvd’s U rows are keys
identically to rows of A even if they are non-integers; whereas rows of V are automatically granted with Int
keys due to logical transformations of expression by the optimizer.

27

4 NOTATIONS

4 Notations

comment

tentative or not yet implemented

28

	Mahout in-core algebraic Scala BindingsSee link: original proposal.
	Imports
	Inline initialization
	Slicing and Assigning
	BLAS-like operations
	Decompositions
	Cholesky decompositon
	SVD
	EigenDecomposition
	QR decomposition
	Rank
	In-core SSVD
	Solving linear equation systems and matrix inversion

	Misc
	Random matrices
	Functional matrix views.
	U(0,1) random matrix view
	U(-1,1) random matrix view
	Univariate N(0,1) matrix view

	Iterators
	Iterating over rows in a matrix
	Iterating over non-zero and all elements of a vector or matrix

	Bringing it all together: in-core SSVD
	Stochastic PCA
	Pitfalls

	Out-of-core linalg bindings
	Initializing Mahout/Spark context
	Recommended imports for Scala & Spark Bindings
	DRM Persistence operators
	Loading DRM off HDFS
	Parallelizing from an in-core matrix
	Empty DRM
	Collecting to driver's jvm in-core
	Collecting to HDFS

	Logical algebraic operators on DRM matrices
	Optimizer actions.
	Computational actions.
	Caching in Spark's Block Manager.

	Transposition
	Elementwise +, -, *, /
	Matrix-matrix multiplication %*%
	Matrix-vector multiplication %*%
	Matrix-scalar +,-,*,/

	Slicing
	Stitching (cbind and rbind)
	Custom pipelines on blocks
	Doing something completely custom
	Broadcasting vectors and matrices to closures.
	Computations providing ad-hoc summaries
	nrow, ncol
	colSums, colMeans
	tentativerowMeans, rowSums
	Matrix norm

	Distributed Decompositions
	Imports for decompositions package
	Distributed thin QR
	Distributed Stochastic SVD
	Distributed Stochastic PCA
	Distributed regularized ALS

	Adjusting parallelism of computations
	Mahout shell for Spark

	Optimizer notes
	Physical operators
	Tracking the partitioning
	Tracking the DRM row key values and their types

	Notations

