Apache Lucene - Index File Formats

by Doug Cutting
Table of contents

1 INAEX FIlE FOMMELS..... oottt ettt et te et e sreenneeneesreene s 3
2 DEFINITIONS.......eiieeeiece ettt st e e re e be et e sreesteenaeeseenaeeneesneenseenne e 3
2.2 INVEITE INUEXING. ...ttt bbbt e et nb e e sne e 3
22 TYPES OF FIEIAS......eeeieieeieeeee ettt n e nne e 4
2.3 SEOIMENLS. ...ttt ettt ettt e e ae e e et e sae e e be e s aee e be e saee e bt e smeeebe e sabe e beeenseeaneeenreennneanns 4
2.4 DOCUMENT NUMDEIS........eiiiie ettt ettt be e raeenre e 4
B OVEIVIBW. ...ttt ettt et st et e st e e te s st e s beeaseeaeeabeeatesaeesaeenseeaeenbeensesaeenreenreaneennens 5
L= A= 1 o S 5
5 PIIMITIVE TS, ettt sttt sttt ettt b e b e bt st e e e e e et e nbesnenrenne s 6
SN =)V PSP 6
372 | g e 72 SRS 6
3 U T 01 7 SR 6
3 o | OSSP 6
ST O S 7
XS (11 OSSPSR 7
B PEI-INAEX FIIES......cceee ettt e s e e b e st e e ae e saeeeteesneeereesaes 7
8.1 SEOMENES FIIE......eeeieee ettt s e b e e e eneenes 8
8.2 LOCK FlB.. ittt et e e e e e s ae e e be e saaeereennee s 9
6.3 DEIEIADIE FlE.....eeeeeee e 9
6.4 COMPOUNT FITES........eeiiciecieee et esne e te e e e sre e neeneaeneenns 9
7 PEr-SEgMENT FIIES..... .ottt sr e 10

L OIS e 10

Apache Lucene - Index File Formats

7.2 TOM DICHONAIY ...c.eiitieieeie sttt st et esseenbe et e sbeenee e e e 11
Al (= 0 0= 0 (ot =SSP 13
7.4 POSITIONS......viieieiteeie ettt ettt e st et e s ae e teeneesse e aeeaseeae e seensesseenseenseaneenseeneenneenns 14
7.5 NOrmMali ZatiON FACIOIS.......ccuieieieecece ettt e sneenaeeneas 15
AT IL= LIV = (0 R 15
7.7 Deleted DOCUMENTS.......c.veiiieeciee ettt e e e ne e e r e e snneereeenes 17
8 LIMITALIONS......ceiueeiiee ettt et e et e e s ae e s b e e s seeenteesbeeenseenseesnreenns 18

Page 2

Apache Lucene - Index File Formats

1. Index File Formats

This document defines the index file formats used in Lucene version 2.1. If you are using a
different version of Lucene, please consult the copy of docs/fi | ef ormats. ht m that
was distributed with the version you are using.

Apache Luceneiswritten in Java, but several efforts are underway to write versions of
Lucene in other programming languages. If these versions are to remain compatible with
Apache Lucene, then alanguage-independent definition of the Lucene index format is
required. This document thus attempts to provide a complete and independent definition of
the Apache Lucene 2.1 file formats.

As Lucene evolves, this document should evolve. Versions of Lucene in different
programming languages should endeavor to agree on file formats, and generate new versions
of this document.

Compatibility notes are provided in this document, describing how file formats have changed
from prior versions.

Inversion 2.1, the file format was changed to allow lock-less commits (ie, no more commit
lock). The changeis fully backwards compatible: you can open apre-2.1 index for searching
or adding/deleting of docs. When the new segmentsfileis saved (committed), it will be
written in the new file format (meaning no specific "upgrade” process is needed). But note
that once a commit has occurred, pre-2.1 Lucene will not be able to read the index.

2. Definitions

The fundamental concepts in Lucene are index, document, field and term.

An index contains a sequence of documents.

e A document is a sequence of fields.

« A field isanamed sequence of terms.

e Atermisastring.

The same string in two different fields is considered a different term. Thus terms are

represented as a pair of strings, the first naming the field, and the second naming text within
the field.

2.1. Inverted Indexing

The index stores statistics about terms in order to make term-based search more efficient.

Page 3

Apache Lucene - Index File Formats

Lucene'sindex falsinto the family of indexes known as an inverted index. Thisis because it
can list, for aterm, the documents that contain it. Thisisthe inverse of the natural
relationship, in which documentslist terms.

2.2. Typesof Fields

In Lucene, fields may be stored, in which case their text is stored in the index literally, ina
non-inverted manner. Fields that are inverted are called indexed. A field may be both stored
and indexed.

Thetext of afield may be tokenized into terms to be indexed, or the text of afield may be
used literally as aterm to be indexed. Most fields are tokenized, but sometimesit is useful for
certain identifier fields to be indexed literally.

See the Field java docs for more information on Fields.

2.3. Segments

Lucene indexes may be composed of multiple sub-indexes, or segments. Each segment isa
fully independent index, which could be searched separately. Indexes evolve by:

1. Creating new segments for newly added documents.
2. Merging existing segments.

Searches may involve multiple segments and/or multiple indexes, each index potentially
composed of a set of segments.

2.4. Document Numbers

Internally, Lucene refers to documents by an integer document number. The first document
added to an index is numbered zero, and each subsequent document added gets a number one
greater than the previous.

Note that a document's number may change, so caution should be taken when storing these
numbers outside of Lucene. In particular, numbers may change in the following situations:

« The numbers stored in each segment are unique only within the segment, and must be
converted before they can be used in alarger context. The standard techniqueisto
allocate each segment a range of values, based on the range of numbers used in that
segment. To convert adocument number from a segment to an external value, the
segment's base document number is added. To convert an external value back to a
segment-specific value, the segment isidentified by the range that the external valueisin,

Page 4

Apache Lucene - Index File Formats

and the segment's base value is subtracted. For example two five document segments
might be combined, so that the first segment has a base value of zero, and the second of
five. Document three from the second segment would have an external value of eight.

When documents are deleted, gaps are created in the numbering. These are eventually
removed as the index evolves through merging. Deleted documents are dropped when
segments are merged. A freshly-merged segment thus has no gaps in its numbering.

3. Overview

Each segment index maintains the following:

Field names. This contains the set of field names used in the index.

Stored Field values. This contains, for each document, alist of attribute-value pairs,
where the attributes are field names. These are used to store auxiliary information about
the document, such asitstitle, url, or an identifier to access a database. The set of stored
fields are what is returned for each hit when searching. Thisis keyed by document
number.

Term dictionary. A dictionary containing all of the terms used in all of the indexed fields
of al of the documents. The dictionary also contains the number of documents which
contain the term, and pointers to the term's frequency and proximity data.

Term Frequency data. For each term in the dictionary, the numbers of all the documents
that contain that term, and the frequency of the term in that document.

Term Proximity data. For each term in the dictionary, the positions that the term occursin
each document.

Normalization factors. For each field in each document, avaueisstored that is
multiplied into the score for hits on that field.

Term Vectors. For each field in each document, the term vector (sometimes called
document vector) may be stored. A term vector consists of term text and term frequency.
To add Term Vectorsto your index see the Field constructors

Deleted documents. An optional file indicating which documents are deleted.

Details on each of these are provided in subsequent sections.

4. File Naming

All files belonging to a segment have the same name with varying extensions. The extensions
correspond to the different file formats described below. When using the Compound File
format (default in 1.4 and greater) these files are collapsed into asingle .cfsfile (see below

Page 5

Apache Lucene - Index File Formats

for details)

Typically, al segmentsin an index are stored in asingle directory, although thisis not
required.

Asof version 2.1 (lock-less commits), file names are never re-used (there is one exception,
"segments.gen”, see below). That is, when any fileis saved to the Directory itisgiven a
never before used filename. Thisis achieved using a simple generations approach. For
example, the first segmentsfile is ssgments 1, then segments 2, etc. The generationisa
sequential long integer represented in a pha-numeric (base 36) form.

5. Primitive Types

5.1. Byte

The most primitive type is an eight-bit byte. Files are accessed as sequences of bytes. All
other data types are defined as sequences of bytes, so file formats are byte-order independent.
5.2. UInt32

32-bit unsigned integers are written as four bytes, high-order bytesfirst.

UInt32 --> <Byte>4

5.3. Uint64
64-bit unsigned integers are written as eight bytes, high-order bytesfirst.
UlInt64 --> <Byte>8

5.4. Vint

A variable-length format for positive integers is defined where the high-order bit of each byte
indicates whether more bytes remain to be read. The low-order seven bits are appended as
increasingly more significant bitsin the resulting integer value. Thus values from zero to 127
may be stored in asingle byte, values from 128 to 16,383 may be stored in two bytes, and so
on.

VInt Encoding Example

Value First byte Second byte Third byte

0 00000000

Page 6

Apache Lucene - Index File Formats

127

128

129

130

16,383

16,384

16,385

This provides compression while still being efficient to decode.

55. Chars

00000001

00000010

01111111

10000000

10000001

10000010

11111111

10000000

10000001

00000001

00000001

00000001

01111111

10000000

10000000

00000001

00000001

L ucene writes unicode character sequences using Java's "modified UTF-8 encoding"” .

5.6. String

Lucene writes strings as a VInt representing the length, followed by the character data.

String --> VInt, Chars

6. Per-Index Files

Thefilesin this section exist one-per-index.

Page 7

Apache Lucene - Index File Formats

6.1. Segments File

The active segmentsin the index are stored in the segment info file, ssgments _N. There may
be one or more segments_N filesin the index; however, the one with the largest generation is
the active one (when older segments N files are present it's because they temporarily cannot
be deleted, or, awriter isin the process of committing). Thisfile lists each segment by name,
has detail s about the separate norms and deletion files, and also contains the size of each
segment.

Asof 2.1, thereis aso afile segments.gen. Thisfile contains the current generation (the N
in segments_N) of the index. Thisisused only as afallback in case the current generation
cannot be accurately determined by directory listing alone (asis the case for some NFS
clients with time-based directory cache expiraation). This file simply contains an Int32
version header (Segmentinfos. FORMAT_LOCKLESS = -2), followed by the generation
recorded as Int64, written twice.

Pre-2.1: Segments --> Format, Version, NameCounter, SegCount, <SegName, SegSize>
SegCount

2.1 and above: Segments --> Format, Version, NameCounter, SegCount, <SegName,
SegSize, DelGen, HasSingleNormFile, NumField, NormGenNumField,
| sCompoundFile>SegCount

Format, NameCounter, SegCount, SegSize, NumField --> Int32
Version, DelGen, NormGen --> Int64

SegName --> String

IsCompoundFile, HasSingleNormFile --> Int8

Format is-1 as of Lucene 1.4 and -3 (Semgentinfos. FORMAT_SINGLE NORM_FILE) as
of Lucene 2.1.

Version counts how often the index has been changed by adding or deleting documents.
NameCounter is used to generate names for new segment files.

SegName is the name of the segment, and is used as the file name prefix for all of the files
that compose the segment's index.

SegSize is the number of documents contained in the segment index.

DelGen is the generation count of the separate deletesfile. If thisis-1, there are no separate
deletes. If itisO, thisisapre-2.1 segment and you must check filesystem for the existence of

Page 8

Apache Lucene - Index File Formats

_X.del. Anything above zero means there are separate deletes (X _N.ddl).
NumField is the size of the array for NormGen, or -1 if there are no NormGens stored.

NormGen records the generation of the separate normsfiles. If NumField is-1, there are no
normGens stored and they are all assumed to be O when the segment file was written pre-2.1
and all assumed to be -1 when the segmentsfileis 2.1 or above. The generation then has the
same meaning as del Gen (above).

| sCompoundFile records whether the segment is written as a compound file or not. If thisis
-1, the segment is not a compound file. If itis 1, the segment is a compound file. Elseit is0,
which means we check filesystem to seeif _X.cfsexists.

If HasSingleNormFileis 1, then the field norms are written as asingle joined file (with
extension .nrm); if it is O then each field's norms are stored as separate .fN files. See
"Normalization Factors' below for details.

6.2. Lock File

A write lock is used to indicate that another process iswriting to the index. Note that thisfile
isnot stored in the index directory itself, but rather in the system's temporary directory, as
indicated in the Java system property "java.io.tmpdir".

The writelock is named "XXXX-writelock" where XX XX istypically aunigque prefix
computed by the directory path to the index. When thisfileis present, aprocessis currently
adding documents to an index, or removing files from that index. Thislock file prevents
severa processes from attempting to modify an index at the same time.

Note that prior to version 2.1, Lucene aso used a commit lock. Thiswas removed in 2.1.

6.3. Deletable File

Prior to Lucene 2.1 there was afile "deletable" that contained details about files that need to
be deleted. Asof 2.1, awriter dynamically computes the files that are deletable, instead, so
no fileiswritten.

6.4. Compound Files

Starting with Lucene 1.4 the compound file format became default. Thisis simply a container
for al files described in the next section (except for the .del file).

Compound (.cfs) --> FileCount, <DataOffset, FileName> FileCount , FileData FileCount
FileCount --> VInt

Page 9

Apache Lucene - Index File Formats

DataOffset --> Long
FileName --> String
FileData--> raw file data

Theraw file datais the data from the individual files named above.

7. Per-Segment Files

Theremaining files are all per-segment, and are thus defined by suffix.

7.1. Fields

Field Info

Field names are stored in the field info file, with suffix .fnm.

FieldInfos (.fnm) --> FieldsCount, <FieldName, FieldBits> FieldsCount

FieldsCount --> VInt

FieldName --> String

FieldBits --> Byte

Fields are numbered by their order in thisfile. Thusfield zero isthefirst field in thefile, field

one the next, and so on. Note that, like document numbers, field numbers are segment
relative.

Stored Fields

Stored fields are represented by two files:
1. Thefieldindex, or .fdx file.

This contains, for each document, a pointer to itsfield data, as follows:
Fieldindex (.fdx) --> <FieldVauesPosition> SegSize
FieldValuesPosition --> Uint64

Thisis used to find the location within the field data file of the fields of a particular
document. Because it contains fixed-length data, this file may be easily randomly
accessed. The position of document n'sfield datais the Uint64 at n*8 in thisfile.

2. Thefield data, or .fdt file.

Page 10

Apache Lucene - Index File Formats

This contains the stored fields of each document, as follows:
FieldData (.fdt) --> <DocFieldData> SegSize

DocFieldData --> FieldCount, <FieldNum, Bits, Value> FieldCount
FieldCount --> VInt

FieldNum --> VInt

Lucene<=1.4:

Bits--> Byte

Value --> String

Only the low-order bit of Bitsisused. It isone for tokenized fields, and zero for
non-tokenized fields.

Lucene>=1.9;
Bits--> Byte

* low order bit isone for tokenized fields

» second bit isone for fields containing binary data

» third bit isone for fields with compression option enabled (if compression is enabled,
the algorithm used is ZLIB)

Value --> String | BinaryValue (depending on Bits)
BinaryValue --> ValueSize, <Byte>"VaueSize
ValueSize --> Vint

7.2. Term Dictionary

Theterm dictionary is represented as two files:
1. Theterminfos, or tisfile.

TerminfoFile (.tis)--> TIVersion, TermCount, IndexInterval, Skiplnterval, Terminfos
TIVersion --> UInt32

TermCount --> UInt64

IndexInterval --> UInt32

Page 11

Apache Lucene - Index File Formats

Skiplnterval --> UInt32

Terminfos --> <TermInfo> TermCount

Terminfo --> <Term, DocFreq, FregDelta, ProxDelta, SkipDelta>
Term --> <PrefixLength, Suffix, FieldNum>

Suffix --> String

PrefixLength, DocFreq, FreqDelta, ProxDelta, SkipDelta
-->Vint

Thisfileis sorted by Term. Terms are ordered first lexicographically by the term's field
name, and within that lexicographically by the term's text.

TIVersion names the version of the format of thisfileand is-2 in Lucene 1.4.

Term text prefixes are shared. The PrefixLength is the number of initial characters from
the previous term which must be pre-pended to aterm’s suffix in order to form the term's
text. Thus, if the previous term's text was "bone" and the term is "boy", the PrefixLength
istwo and the suffix is"y".

FieldNumber determines the term'sfield, whose name is stored in the .fdt file.
DocFreq is the count of documents which contain the term.

FregDelta determines the position of thisterm's TermFreqgs within the .frq file. In
particular, it isthe difference between the position of thisterm's datain that file and the
position of the previous term's data (or zero, for the first term in the file).

ProxDelta determines the position of thisterm's TermPositions within the .prx file. In
particular, it is the difference between the position of thisterm's datain that file and the
position of the previous term’s data (or zero, for the first termin thefile.

SkipDelta determines the position of this term's SkipData within the .frq file. In
particular, it isthe number of bytes after TermFregs that the SkipData starts. In other
words, it isthe length of the TermFreq data.

. Theterm info index, or .tii file.
This contains every Indexinterval th entry from the .tisfile, along with its location in the

"tis" file. Thisis designed to be read entirely into memory and used to provide random
accessto the"tis' file.

The structure of thisfileisvery similar to the .tisfile, with the addition of one item per
record, the IndexDelta.

Page 12

Apache Lucene - Index File Formats

Terminfolndex (.tii)--> TIVersion, IndexTermCount, IndexInterval, Skiplnterval,
Termindices

TIVersion --> UInt32

IndexTermCount --> UInt64

IndexInterval --> UInt32

Skiplnterval --> UInt32

Termindices --> <Terminfo, IndexDelta> IndexTermCount
IndexDelta--> VLong

IndexDelta determines the position of this term’'s Terminfo within the .tisfile. In
particular, it is the difference between the position of thisterm's entry in that file and the
position of the previous term's entry.

Skiplnterval isthe fraction of TermDocs stored in skip tables. It is used to accelerate
TermDocs.skipTo(int). Larger values result in smaller indexes, greater acceleration, but
fewer accelerable cases, while smaller values result in bigger indexes, less acceleration
and more accelerable cases.

7.3. Frequencies

The .frq file contains the lists of documents which contain each term, along with the
frequency of the term in that document.

FregFile (.frg) --> <TermFregs, SkipData> TermCount

TermFreqgs --> <TermFreg> DocFreq

TermFreq --> DocDelta, Freq?

SkipData --> <SkipDatum> DocFreg/Skiplnterval

SkipDatum --> DocSkip,FreqSkip,ProxSkip
DocDelta,Freq,DocSkip,FreqSkip,ProxSkip --> Vint

TermFregs are ordered by term (the term isimplicit, from the .tisfile).
TermFreq entries are ordered by increasing document number.

DocDelta determines both the document number and the frequency. In particular, DocDelta/2
isthe difference between this document number and the previous document number (or zero

Page 13

Apache Lucene - Index File Formats

when thisisthe first document in a TermFregs). When DocDeltais odd, the frequency is one.
When DocDeltais even, the frequency is read as another Vint.

For example, the TermFregs for aterm which occurs once in document seven and three times
in document eleven would be the following sequence of Vints:

15,8, 3

DocSkip records the document number before every Skiplnterval th document in TermFregs.
Document numbers are represented as differences from the previous value in the sequence.
FreqSkip and ProxSkip record the position of every Skiplnterval th entry in FregFile and
ProxFile, respectively. File positions are relative to the start of TermFregs and Positions, to
the previous SkipDatum in the sequence.

For example, if DocFreg=35 and Skiplnterval=16, then there are two SkipData entries,
containing the 15 th and 31 st document numbersin TermFregs. The first FreqSkip names the
number of bytes after the beginning of TermFregs that the 16 th SkipDatum starts, and the
second the number of bytes after that that the 32 nd starts. The first ProxSkip names the
number of bytes after the beginning of Positions that the 16 th SkipDatum starts, and the
second the number of bytes after that that the 32 nd starts.

7.4. Positions

The .prx file contains the lists of positions that each term occurs at within documents.
ProxFile (.prx) --> <TermPositions> TermCount

TermPositions --> <Positions> DocFreq

Positions --> <PositionDelta> Freq

PositionDelta--> VInt

TermPositions are ordered by term (the term isimplicit, from the .tisfile).

Positions entries are ordered by increasing document number (the document number is
implicit from the .frq file).

PositionDelta is the difference between the position of the current occurrence in the
document and the previous occurrence (or zero, if thisisthe first occurrencein this
document).

For example, the TermPositions for aterm which occurs as the fourth term in one document,
and as the fifth and ninth term in a subsequent document, would be the following sequence of
Vints:

Page 14

Apache Lucene - Index File Formats

4,54

7.5. Normalization Factors

Pre-2.1: There'sanorm file for each indexed field with a byte for each document. The
f[0-9]* file contains, for each document, a byte that encodes a value that is multiplied into
the score for hits on that field:

Norms (.f[0-9]*) --> <Byte> SegSize

2.1 and above: There'sasingle .nrm file containing all norms:

AlINorms (.nrm) --> NormsHeader,<Norms> NumFieldsWithNorms

Norms --> <Byte> SegSize

NormsHeader --> 'N''/R','M",Version

Version --> Byte

NormsHeader has 4 bytes, last of which isthe format version for thisfile, currently -1.

Each byte encodes a floating point value. Bits 0-2 contain the 3-bit mantissa, and bits 3-8
contain the 5-bit exponent.

These are converted to an |EEE single float value as follows:

If the byte is zero, use a zero float.

Otherwise, set the sign bit of the float to zero;

add 48 to the exponent and use this as the float's exponent;

map the mantissa to the high-order 3 bits of the float's mantissa; and

5. set the low-order 21 bits of the float's mantissato zero.

e

A separate norm file is created when the norm values of an existing segment are modified.
When field N is modified, a separate norm file .sN is created, to maintain the norm values for
that field.

Pre-2.1: Separate norm files are created only for compound segments.
2.1 and above: Separate norm files are created (when adequate) for both compound and non
compound segments.

7.6. Term Vectors
Term Vector support is an optional on a field by field basis. It consists of 4 files.

Page 15

Apache Lucene - Index File Formats

1. The Document Index or .tvx file.

This contains, for each document, a pointer to the document data in the Document (.tvd)
file.

Documentindex (.tvx) --> TV XV ersion<DocumentPosition> NumDocs
TVXVersion --> Int
DocumentPosition --> UInt64

Thisisused to find the position of the Document in the .tvd file.
2. The Document or .tvd file.

This contains, for each document, the number of fields, alist of the fields with term
vector info and finally alist of pointersto the field information in the .tvf (Term Vector
Fields) file.

Document (.tvd) --> TVDVersion<NumFields, FieldNums, FieldPositions,> NumDocs
TVDVersion --> Int

NumFields--> Vint

FieldNums --> <FieldNumDelta> NumFields

FieldNumDelta--> Vint

FieldPositions --> <FieldPosition> NumFields

FieldPosition --> VLong

The .tvd fileis used to map out the fields that have term vectors stored and where the
field information isin the .tvf file.

3. TheFidd or .tvf file.

Thisfile contains, for each field that has aterm vector stored, alist of the terms, their
frequencies and, optionally, position and offest information.

Field (.tvf) --> TVFVerson<NumTerms, Position/Offset, TermFreqs> NumFields
TVFVersion --> Int

NumTerms--> Vint

Position/Offset --> Byte

TermFregs --> <TermText, TermFreq, Positions?, Offsets?> NumTerms

Page 16

Apache Lucene - Index File Formats

TermText --> <PrefixLength, Suffix>
PrefixLength --> VInt

Suffix --> String

TermFreq --> Vint

Positions --> <VInt>TermFreq
Offsets --> <VInt, VInt>TermFreq

Notes:
» Position/Offset byte stores whether this term vector has position or offset information
stored.

o Termtext prefixes are shared. The PrefixLength is the number of initial characters
from the previous term which must be pre-pended to aterm’s suffix in order to form
the term's text. Thus, if the previous term's text was "bone" and the term is "boy", the
PrefixLength istwo and the suffix is"y".

» Positions are stored as delta encoded VInts. This means we only store the difference
of the current position from the last position

» Offsets are stored as delta encoded Vints. Thefirst Vint is the startOffset, the second
is the endOffset.

7.7. Deleted Documents

The .dél fileisoptional, and only exists when a segment contains deletions.
Although per-segment, thisfile is maintained exterior to compound segment files.
Pre-2.1: Deletions (.del) --> ByteCount,BitCount,Bits

2.1 and above: Deletions (.del) --> [Format],ByteCount,BitCount, Bits | DGaps (depending
on Format)

Format,ByteSize,BitCount --> Uint32

Bits --> <Byte> ByteCount

DGaps --> <DGap,NonzeroByte> NonzeroBytesCount
DGap --> Vint

NonzeroByte --> Byte

Format is Optional. -1 indicates DGaps. Non-negative value indicates Bits, and that Format is

Page 17

Apache Lucene - Index File Formats

excluded.
ByteCount indicates the number of bytesin Bits. It istypically (SegSize/8)+1.
BitCount indicates the number of bits that are currently set in Bits.

Bits contains one bit for each document indexed. When the bit corresponding to a document
number is set, that document is marked as deleted. Bit ordering is from least to most
significant. Thus, if Bits contains two bytes, 0x00 and 0x02, then document 9 is marked as
deleted.

DGaps represents sparse bit-vectors more efficiently than Bits. It is made of DGaps on
indexes of nonzero bytes in Bits, and the nonzero bytes themselves. The number of nonzero
bytesin Bits (NonzeroBytesCount) is not stored.

For example, if there are 8000 bits and only bits 10,12,32 are set, DGaps would be used:
(ViInt) 1, (byte) 20, (VInt) 3, (Byte) 1

8. Limitations

There are afew places where these file formats limit the maximum number of terms and
documents to a 32-bit quantity, or to approximately 4 billion. Thisis not today a problem,
but, in the long term, probably will be. These should therefore be replaced with either UInt64
values, or better yet, with VInt values which have no limit.

Page 18

	1 Index File Formats
	2 Definitions
	2.1 Inverted Indexing
	2.2 Types of Fields
	2.3 Segments
	2.4 Document Numbers

	3 Overview
	4 File Naming
	5 Primitive Types
	5.1 Byte
	5.2 UInt32
	5.3 Uint64
	5.4 VInt
	5.5 Chars
	5.6 String

	6 Per-Index Files
	6.1 Segments File
	6.2 Lock File
	6.3 Deletable File
	6.4 Compound Files

	7 Per-Segment Files
	7.1 Fields
	7.2 Term Dictionary
	7.3 Frequencies
	7.4 Positions
	7.5 Normalization Factors
	7.6 Term Vectors
	7.7 Deleted Documents

	8 Limitations

