
jUDDI 3.0

User Guide
ASF-JUDDI-USRGUIDE-11/02/09

Contents
Table of Contents

Contents... 2

About This Guide.. 3

What This Guide Contains.................................. 3
Audience... 3
Prerequisites.. 3
Organization.. 3
Documentation Conventions............................... 3
Additional Documentation.................................. 4
Contacting Us.. 4

 Setup... 5

Introduction... 5
Using the JAR... 6
Using the WAR files.. 7
Using the Tomcat Bundle.................................... 8
Using jUDDI as Web Service.............................. 9
Using jUDDI with your application..................11

Authentication... 12

Introduction... 12
JUDDI Authentication....................................... 13
XMLDocAuthentication...................................13
CryptedXMLDocAuthentication....................... 13
JBoss Authentication... 14

Index.. 15

About This Guide
What This Guide Contains

The User Guide document describes use of jUDDI – installation and setup.

Audience

This guide is most relevant to engineers who are responsible for setting up jUDDI 3.0 installations.

Prerequisites

None.

Organization

This guide contains the following chapters:

• Chapter 1, Setup

• Chapter 2, Authentication

Documentation Conventions

The following conventions are used in this guide:

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Table 1 Formatting Conventions

Additional Documentation

None on the subject.

Contacting Us

Email: juddi-user@ws.apache.org

Chapter 1

 Setup
Introduction

Within jUDDI, there are three downloadable files (juddi-core.jar, juddi.war, and juddi-tomcat.zip).
You should determine which one to use depending on what level of integration you want with your
application and your platform / server choices.

Using the JAR

The juddi-core module produces a JAR which contains the jUDDI source and a jUDDI persistence.xml
configuration. jUDDI's persistence is being actively tested with both OpenJPA and with Hibernate.

If you are going to use only the JAR, you would need to directly insert objects into jUDDI through the database
backend or persistence layer, or configure your own Webservice provider with the provided WSDL files and
classes.

Using the WAR files

As with the JAR, you need to make a decision on what framework you would like to use when building the
WAR. There will eventually be two WAR files shipped – one using CXF and one using Axis 2. For the
alpha release, only CXF has been tested thoroughly.

Simple copy the WAR to the deploy folder of your server (this release has been tested under Apache Tomcat
5.5.23), start your server, and follow the directions under “using jUDDI as a Web Service”.

Using the Tomcat Bundle

The jUDDI Tomcat bundle packages up the jUDDI WAR, Apache Derby, and a few necessary configuration files
and provides the user with a pre-configured jUDDI instance. By default, the Hibernate is used as the
persistence layer and CXF is used as a Web Serice framework.

To get started using the Tomcat bundle, unzip the juddi-tomcat-bundle.zip, and start Tomcat :

% cd apache-tomcat-5.5.23/bin
% ./startup.sh

Using jUDDI as Web Service

Browse to http://localhost:8080/juddi/services

The services page shows you the available endpoints and methods available. Using any SOAP client, you
should be able to send some sample requests to jUDDI to test:

http://localhost:8080/juddi/services/

Using jUDDI with your application

As of the Alpha release, two of the UDDI v3 APIs should be active within jUDDI : inquiry and publish.

Chapter 2

Authentication
Introduction

In order to enforce proper write access to jUDDI, each request to jUDDI needs a valid authToken.
Note that read access is not restricted and therefore queries into the registries are not restricted.

To obtain a valid authToken a getAuthToken() request must be made, where a GetAuthToken object
is passed. On the GetAuthToken object a userid and credential (password) needs to be set.

org.uddi.api_v3.GetAuthToken ga = new org.uddi.api_v3.GetAuthToken();
ga.setUserID(pubId);
ga.setCred("");

org.uddi.api_v3.AuthToken token = securityService.getAuthToken(ga);

The property juddi.auth in the juddi.properties configuration file can be used to
configure how jUDDI is going to check the credentials passed in on the GetAuthToken request. By
default jUDDI uses the JUDDIAuthenticator implementation. You can provide your own
authentication implementation or use any of the ones mention below. The implementation needs to
implement the org.apache.juddi.auth.Authenticator interface, and juddi.auth
property should refer to the implementation class.

There are two phases involved in Authentication. The authenticate phase and the identify phase.
Both of these phases are represented by a method in the Authenticator interface.

The authenticate phase occurs during the GetAuthToken request as described above. The goal of
this phase is to turn a user id and credentials into a valid publisher id. The publisher id (referred to
as the “authorized name” in UDDI terminology) is the value that assigns ownership within UDDI.
Whenever a new entity is created, it must be tagged with ownership by the authorized name of the
publisher. The value of the publisher id can be completely transparent to jUDDI – the only
requirement is that one exists to assign to new entities. Thus, the authenticate phase must return a
non-null publisher id. Upon completion of the GetAuthToken request, an authentication token is
issued to the caller.

In subsequent calls to the UDDI API that require authentication, the token issued from the
GetAuthToken request must be provided. This leads to the next phase of jUDDI authentication – the
identify phase.

The identify phase is responsible for turning the authentication token (or the publisher id associated
with that authentication token) into a valid UddiEntityPublisher object. The
UddiEntityPublisher object contains all the properties necessary to handle ownership of
UDDI entities. Thus, the token (or publisher id) is used to “identify” the publisher.

The two phases provide compliance with the UDDI authentication structure and grant flexibility for
users that wish to provide their own authentication mechanism. Handling of credentials and
publisher properties can be done entirely outside of jUDDI. However, jUDDI provides the
Publisher entity, which is a sub-class of UddiEntityPublisher, to persist publisher
properties within jUDDI. This is used in the default authentication and is the subject of the next
section.

JUDDI Authentication

The default authentication mechanism provided by jUDDI is the JUDDIAuthenticator. The
authenticate phase of the JUDDIAuthenticator simply checks to see if the user id passed in has
an associated record in the Publisher table. No credentials checks are made.

The identify phase uses the publisher id to retreive the Publisher record and return it. All
necessary publisher properties are populated as Publisher inherits from
UddiEntityPublisher.

juddi.auth = org.apache.juddi.auth.JUDDIAuthentication

XMLDocAuthentication

The XMLDocAuthentication implementation needs a XML file on the classpath. The
juddi.properties file would need to look like
juddi.auth = org.apache.juddi.auth.XMLDocAuthentication
juddi.usersfile = juddi-users.xml

where the name of the xml can be provided but it defaults to juddi-users.xml, and the content
of the file would looks something like
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<juddi-users>
 <user userid="anou_mana" password="password" />
 <user userid="bozo" password="clown" />
 <user userid="sviens" password="password" />
</juddi-users>

The authenticate phase checks that the user id and password match a value in the XML file. The
identify phase simply uses the user id to populate a new UddiEntityPublisher.

CryptedXMLDocAuthentication

The CryptedXMLDocAuthentication implementation is similar to the XMLDocAuthentication
implementation, but the passwords are encrypted
juddi.auth = org.apache.juddi.auth.CryptedXMLDocAuthentication
juddi.usersfile = juddi-users-encrypted.xml
juddi.cryptor = org.apache.juddi.cryptor.DefaultCryptor

where the name user credential file is juddi-users-encrypted.xml, and the content of the
file would looks something like
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<juddi-users>
 <user userid="anou_mana" password="+j/kXkZJftwTFTBH6Cf6IQ=="/>
 <user userid="bozo" password="Na2Ait+2aW0="/>
 <user userid="sviens" password="+j/kXkZJftwTFTBH6Cf6IQ=="/>
</juddi-users>

The DefaultCryptor implementation uses BEWithMD5AndDES and Base64 to encrypt the
passwords. Note that the code in the AuthenticatorTest can be used to learn more about how
to use this Authenticator implementation. You can plugin your own encryption algorithm by
implementing the org.apache.juddi.cryptor.Cryptor interface and referencing your
implementation class in the juddi.cryptor property.

The authenticate phase checks that the user id and password match a value in the XML file. The
identify phase simply uses the user id to populate a new UddiEntityPublisher.

JBoss Authentication

Finally is it possible to hook up to third party credential stores. If for example jUDDI is deployed to
the JBoss Application server it is possible to hook up to it's authentication machinery. The
JBossAuthenticator class is provided in the docs/examples/auth directory. This class
enables juddi deployments on JBoss use a server security domain to authenticate users.

To use this class you must add the following properties to the juddi.properties file:
 juddi.auth=org.apache.juddi.auth.JBossAuthenticator
 juddi.securityDomain=java:/jaas/other

The juddi.auth property plugs the JbossAuthenticator class into the juddi the Authenticator
framework. The juddi.sercuity.domain, configures the JBossAuthenticator class where it
can lookup the application server's security domain, which it will use to perform the authentication.
Note that JBoss creates one security domain for each application policy element on the
$JBOSS_HOME/server/default/conf/login-config.xml file, which gets bound to
the server JNDI tree with name java:/jaas/<application-policy-name>. If a lookup
refers to a non existent application policy it defaults to a policy named other.

Index

