
A R I N T O M U R D O P O , A N T O N I O S E V E R I E N ,

G I A N M A R C O D E F R A N C I S C I M O R A L E S , A N D

A L B E R T B I F E T

S A M O A
D E V E L O P E R ’ S
G U I D E

D R A F T V E R S I O N 0 . 0 . 1
YA H O O L A B S B A R C E L O N A

Contents

1 Introduction 1

2 Scalable Advanced Massive Online Analysis 5

3 Decision Tree Induction 19

4 Distributed Streaming Decision Tree Induction 29

5 Distributed Clustering Design 41

6 Bibliography 47

1
Introduction

Scalable Advanced Massive Online Analysis (SAMOA) is a framework
that includes distributed machine learning for data streams with an
interface to plug-in different stream processing platforms.

Web companies, such as Yahoo, need to obtain useful information
from big data streams, i.e. large-scale data analysis task in real-time. A
concrete example of big data stream mining is Tumblr spam detection
to enhance the user experience in Tumblr. Tumblr is a microblogging
platform and social networking website. In terms of technique, Tumblr
could use machine learning to classify whether a comment is a spam
or not spam. And in terms of data volume, Tumblr users generate
approximately three terabytes of new data everyday1. Unfortunately, 1 http://highscalability.

com/blog/2013/5/20/

the-tumblr-architecture-yahoo-bought-for-a-cool-billion-doll.

html

performing real-time analysis task on big data is not easy. Web com-
panies need to use systems that are able to efficiently analyze newly
incoming data with acceptable processing time and limited memory.

1.1 Big Data V’s

Big data is a recent term that has appeared to define the large amount
of data that surpasses the traditional storage and processing require-
ments. Volume, Velocity and Variety, also called the three Vs, is com-
monly used to characterize big data. Looking at each of the three Vs
independently brings challenges to big data analysis.

Volume
The volume of data implies in scaling the storage and being able to

perform distributed querying for processing. Solutions for the volume
problem are either by using datawarehousing techniques or using par-
allel processing architecture systems such as Apache Hadoop.

Velocity
The V for velocity deals with the rate in which data is generated

and flows into a system. Everyday sensors devices and applications

http://highscalability.com/blog/2013/5/20/the-tumblr-architecture-yahoo-bought-for-a-cool-billion-doll.html
http://highscalability.com/blog/2013/5/20/the-tumblr-architecture-yahoo-bought-for-a-cool-billion-doll.html
http://highscalability.com/blog/2013/5/20/the-tumblr-architecture-yahoo-bought-for-a-cool-billion-doll.html
http://highscalability.com/blog/2013/5/20/the-tumblr-architecture-yahoo-bought-for-a-cool-billion-doll.html

2 samoa developer’s guide

generate unbounded amount of information that can be used in many
ways for predictive purposes and analysis. Velocity not only deals
with the rate of data generation but also with the speed in which an
analysis can be returned from this generated data. Having realtime
feedback is crucial when dealing with fast evolving information such
as stock markets, social networks, sensor networks, mobile informa-
tion and many others. Aiming to process these streams of unbounded
flow of data some frameworks have emerged like the Apache! S4 and
the Twitter Storm platforms.

Variety
One problem in big data is the variety of data representations. Data

can have many different formats depending of the source, therefore
dealing with this variety of formats can be daunting. Distributed key-
value stores, commonly referred as NoSQL databases, come in very
handy for dealing with variety due to the unstructured way of storing
data. This flexibility provides and advantage when dealing with big
data. Traditional relational databases would imply in restructuring the
schemas and remodeling when new formats of data appear.

1.2 Big Data Machine Learning Frameworks

Distributed machine learning frameworks, such as Mahout2 and ML- 2 http://mahout.apache.org/

Base 3, address volume and variety dimensions. Mahout is a collection 3 Tim Kraska, Ameet Talwalkar, John
Duchi, Rean Griffith, Michael J. Franklin,
and Michael Jordan. MLBase: A Dis-
tributed Machine-Learning System. In
In Conference on Innovative Data Systems
Research, 2013

of machine learning algorithms and they are implemented on top of
Hadoop. MLBase aims to ease users in applying machine learning on
top of distributed computing platform. Streaming machine learning
frameworks, such as Massive Online Analysis (MOA)4 and Vowpal

4 http://moa.cms.waikato.ac.nz/
Wabbit5, address velocity and variety dimensions. Both frameworks 5 http://github.com/JohnLangford/

vowpal_wabbit/wikicontain algorithm that suitable for streaming setting and they allow
the development of new machine learning algorithm on top of them.

However, few solutions have addressed all the three big data di-
mensions to perform big data stream mining. Most of the current
solutions and frameworks only address at most two out of the three
big data dimensions. The existence of solutions that address all big
data dimensions allows the web-companies to satisfy their needs in
big data stream mining.

1.3 SAMOA

Scalable Advanced Massive Online Analysis (SAMOA) is a framework
that includes distributed machine learning for data streams with an in-
terface to plug-in different stream processing platforms. SAMOA can
be used in two different scenarios; data mining and machine learning

http://mahout.apache.org/
http://moa.cms.waikato.ac.nz/
http://github.com/JohnLangford/vowpal_wabbit/wiki
http://github.com/JohnLangford/vowpal_wabbit/wiki

introduction 3

on data streams, or developers can implement their own algorithms an
run them on production. Another aspect of SAMOA is the stream pro-
cessing platform abstraction where developers can also add new plat-
forms by using the API available. With these separation of roles the
SAMOA project is divided into SAMOA-API and SAMOA-Platform.
The SAMOA-API allows developers to develop for SAMOA without
worrying about which distributed SPE is going to be used. In the case
of new SPEs being released or the interest in integrating another plat-
form, a new SAMOA-Platform module can be added. The first release
of SAMOA supports two SPE that are the state or the art on the subject
matter; Apache S4 and Twitter Storm.

The rest of this document is organized as follows. Chapter 2 presents
the Scalable Advanced Massive Online Analysis (SAMOA) framework.
Chapter 3 explains basic decision tree induction, and the SAMOA im-
plementation of a distributed streaming decision tree induction algo-
rithm is presented in Chapter 4. The details of the distributed cluster-
ing algorithm implemented in SAMOA are presented in Chapter 5.

2
Scalable Advanced Massive Online Analysis

Scalable Advanced Massive Online Analysis (SAMOA) contains a pro-
gramming abstraction for distributed streaming algorithm that allows
development of new ML algorithms without dealing with the com-
plexity of underlying streaming processing engine (SPE). SAMOA also
provides extension points for integration of new SPEs into the system.
These features allow SAMOA users to develop distributed streaming
ML algorithms once and they can execute the algorithm in multiple
SPEs. Section 2.1 discusses the high level architecture and the main
design goals of SAMOA. Sections 2.2 and 2.3 discuss our implemen-
tations to satisfy the main design goals. Section 2.4 presents the Storm
integration into SAMOA.

2.1 High Level Architecture

We start the discussion of SAMOA high level architecture by identi-
fying the entities or users that use SAMOA. There are three types of
SAMOA users:

1. Platform users, who need to use ML but they don’t want to imple-
ment the algorithm.

2. ML developers, who develop new ML algorithms on top of SAMOA
and use the already developed algorithm in SAMOA.

3. Platform developers, who extend SAMOA to integrate more SPEs
into SAMOA.

Moreover, we identify three design goals of SAMOA which are:

1. Flexibility in term of developing new ML algorithms or reusing
existing ML algorithms from existing ML frameworks.

2. Extensibility in term of extending SAMOA with new SPEs.

3. Scalability in term of handling ever increasing amount of data.

6 samoa developer’s guide

samoa-SPE

SAMOA

Algorithm and API

SPE-adapter

S4 Storm other SPEs

M
L-

ad
ap

te
r MOA

Other ML
frameworks

samoa-S4 samoa-storm samoa-other-SPEs

Figure 2.1: SAMOA High Level Archi-
tecture

Figure 2.1 shows the high-level architecture of SAMOA which at-
tempts to fulfill the aforementioned design goals. The algorithm block
contains existing distributed streaming algorithms that have been im-
plemented in SAMOA. This block enables platform users to easily use
the existing algorithm without worrying about the underlying SPEs.

The application programming interface(API) block consists of primi-
tives and components that facilitate ML developers implementing new
algorithms. The ML-adapter layer allows ML developers to integrate ex-
isting algorithms in MOA or other ML frameworks into SAMOA. The
API block and ML-adapter layer in SAMOA fulfill the flexibility goal
since they allow ML developers to rapidly develop ML algorithms us-
ing SAMOA. Section 2.2 further discusses the modular components
of SAMOA and the ML-adapter layer.

Next, the SPE-adapter layer supports platform developers in inte-
grating new SPEs into SAMOA. To perform the integration, platform
developers should implement the samoa-SPE layer as shown in fig-
ure 2.1. Currently SAMOA is equipped with two layers: samoa-S4
layer for S4 and samoa-Storm layer for Storm. To satisfy extensibility
goal, the SPE-adapter layer decouples SPEs and ML algorithms imple-
mentation in SAMOA such that platform developers are able to easily
integrate more SPEs into SAMOA. Section 2.3 presents more details
about this layer in SAMOA.

The last goal, scalability, implies that SAMOA should be able to
scale to cope ever increasing amount of data. To fulfill this goal,
SAMOA utilizes modern SPEs to execute its ML algorithms. The rea-
son for using modern SPEs such as Storm and S4 in SAMOA is that
they are designed to provide horizontal scalability to cope with a high
amount of data. Currently SAMOA is able to execute on top of Storm

scalable advanced massive online analysis 7

and S4.

2.2 SAMOA Modular Components

This section discusses SAMOA modular components and APIs that
allow ML developers to perform rapid algorithm development. The
components are: processor, stream, content event, topology and task.

Processor

A processor in SAMOA is a unit of computation element that executes
some part of the algorithm on a specific SPE. Processors contain the
actual logic of the algorithms implemented by ML developers. Pro-
cessing items (PI) are the internal different concrete implementation of
processors for each SPE.

The SPE-adapter layer handles the instantiation of PIs. There are
two types of PI, entrance PI and normal PI. An entrance PI converts
data from external source into instances or independently generates
instances. Then, it sends the instances to the destination PI via the cor-
responding stream using the correct type of content event. A normal PI
consumes content events from incoming stream, processes the content
events, and it may send the same content events or new content events
to outgoing streams. ML developers are able to specify the parallelism
hint, which is the number of runtime PI during SAMOA execution as
shown in figure 2.2. A runtime PI is an actual PI that is created by the
underlying SPE during execution. SAMOA dynamically instantiates
the concrete class implementation of the PI based on the underlying
SPE.

1

source runtime
PI

1st

n2nd

(n-1)th

n-th

destination runtime PI

n runtime PIs since
parallelism hint is set to n

Figure 2.2: Parallelism Hint in SAMOA

8 samoa developer’s guide

A PI uses composition to contain its corresponding processor and
streams. A processor is reusable which allows ML developers to use
the same implementation of processors in more than one ML algo-
rithm implementations. The separation between PIs and processors
allows ML developers to focus on developing ML algorithm without
worrying about the SPE-specific implementation of PIs.

Stream and Content Event

A stream is a connection between a PI into its corresponding destina-
tion PIs. ML developers view streams as connectors between PIs and
mediums to send content event between PIs. A content event wraps the
data transmitted from a PI to another via a stream. Moreover, similar
to processors, content events are reusable. ML developers can reuse a
content event in more than one algorithm.

stream

(i) stream is associated
with only one source PI

source PI

destination PI#1

destination PI#2

(ii) other PIs connect to
existing stream via “grouping”

Key grouping

Shuffle grouping

Figure 2.3: Instatiation of a Stream and
Examples of Groupings in SAMOA

Refer to figure 2.2, we define a source PI as a PI that sends content
events through a stream. A destination PI is a PI that receives content
event via a stream. ML developers instantiate a stream by associating it
with exactly one source PI. When destination PIs want to connect into a
stream, they need to specify the grouping mechanism which determines
how the stream routes the transported content events. Currently there
are three grouping mechanisms in SAMOA:

• Shuffle grouping, which means the stream routes the content events
in a round-robin way among the corresponding runtime PIs. This
means each runtime PI receives the same number of content events
from the stream.

• All grouping, which means the stream replicates the content events
and routes them to all corresponding runtime PIs.

• Key grouping, which means the stream routes the content event
based on the key of the content event, i.e. the content events with

scalable advanced massive online analysis 9

the same value of key are always routed by the stream into the same
runtime PI.

We design streams as a Java interface. Similar to processing items,
the streams are dynamically instantiated by SAMOA based on the un-
derlying SPEs hence ML developers do not need to worry about the
streams and groupings implementation. We design content events as
a Java interface and ML developers need to provide a concrete imple-
mentation of content events especially to generate the necessary key to
perform key grouping.

Topology and Task

A topology is a collection of connected processing items and streams.
It represents a network of components that process incoming data
streams. A distributed streaming ML algorithm implemented on top
of SAMOA corresponds to a topology.

A task is a machine learning related activity such as performing a
specific evaluation for a classifier. Example of a task is prequential
evaluation task i.e. a task that uses each instance for testing the model
performance and then it uses the same instance to train the model
using specific algorithms. A task corresponds also to a topology in
SAMOA.

Platform users basically use SAMOA’s tasks. They specify what
kind of task they want to perform and SAMOA automatically con-
structs a topology based on the corresponding task. Next, the platform
users need to identify the SPE cluster that is available for deployment
and configure SAMOA to execute on that cluster. Once the config-
uration is correct, SAMOA deploys the topology into the configured
cluster seamlessly and platform users could observe the execution re-
sults through the dedicated log files of the execution. Moving forward,
SAMOA should incorporate proper user interface similar to Storm UI
to improve experience of platform users in using SAMOA.

ML-adapter Layer

The ML-adapter layer in SAMOA consists of classes that wrap ML
algorithm implementations from other ML frameworks. Currently
SAMOA has a wrapper class for MOA algorithms or learners, which
means SAMOA can easily utilizes MOA learners to perform some
tasks. SAMOA does not change the underlying implementation of the
MOA learners therefore the learners still execute in sequential manner
on top of SAMOA underlying SPE.

SAMOA is implemented in Java, hence ML developers can easily
integrate Java-based ML frameworks. For other frameworks not in

10 samoa developer’s guide

Java, ML developers could use available Java utilities such as JNI to
extend this layer.

Putting All the Components Together

ML developers design and implement distributed streaming ML al-
gorithms with the abstraction of processors, content events, streams
and processing items. Using these modular components, they have
flexibility in implementing new algorithms by reusing existing proces-
sors and content events or writing the new ones from scratch. They
have also flexibility in reusing existing algorithms and learners from
existing ML frameworks using ML-adapter layer.

Other than algorithms, ML developers are also able to implement
tasks also with the same abstractions. Since processors and content
events are reusable, the topologies and their corresponding algorithms
are also reusable. This implies, they have also flexibility in implement-
ing new task by reusing existing algorithms and components, or by
writing new algorithms and components from scratch.

2.3 SPE-adapter Layer

The SPE-adapter layer decouples the implementation of ML algorithm
and the underlying SPEs. This decoupling facilitates platform devel-
opers to integrate new SPEs into SAMOA. Refer to the simplified class
diagram of SPE-adapter layer in figure 2.3, SPE-adapter layer uses the
abstract factory pattern to instantiate the appropriate SAMOA compo-
nents based on the underlying SPEs. ComponentFactory is the inter-
face representing the factory and this factory instantiates objects that
implement Component interface. The Component in this case refers to
SAMOA’s procesing items and streams. Platform developers should
implement the concrete implementation of both ComponentFactory and
Component. Current SAMOA implementation has factory and compo-
nents implementation for S4 and Storm.

This design makes SAMOA platform agnostic which allows ML de-
velopers and platform users to use SAMOA with little knowledge of
the underlying SPEs. Furthermore, platform developers are able to in-
tegrate new SPEs into SAMOA without any knowledge of the available
algorithms in SAMOA.

2.4 Storm Integration to SAMOA

This section explains the Storm integration into SAMOA through the
aforementioned SPE-adapter layer. To start the explanation, section 2.4
presents some basic knowledge of Storm that related to the SPE-adapter

scalable advanced massive online analysis 11

 pkg

+ createComponent() : Component

<<interface>>
ComponentFactory

+ componentSpecificMethod() : void

<<interface>>
Component

S4ComponentFactory

StormComponentFactory

S4Component

StormComponent

- concrete_implementation- creator

*1

- concrete_implementation- creator

*1

Topology

Task

Figure 2.4: Simplified Class Diagram of
SPE-adapter Layer

layer. Section 2.4 discusses our proposed design in adapting Storm
components into SAMOA.

Overview of Storm

Storm is a distributed streaming computation framework that utilizes
MapReduce-like programming model for streaming data. Storm main
use case is to perform real-time analytics for streaming data. For ex-
ample, Twitter uses Storm1 to discover emerging stories or topics, to 1 http://www.slideshare.net/

KrishnaGade2/storm-at-twitterperform online learning based on tweet features for ranking of search
results, to perform realtime analytics for advertisement and to process
internal logs. The main advantage of Storm over Hadoop MapReduce
(MR) is its flexibility in handling stream processing. In fact, Hadoop
MR has complex and error-prone configuration when it is used for
handling streaming data. Storm provides at-least-once message pro-
cessing. It is designed to scale horizontally. Storm does not have inter-
mediate queues which implies less operational overhead. Moreover,
Storm promises also to be a platform that "just works".

The fundamental primitives of Storm are streams, spouts, bolts, and
topologies. A stream in Storm is an unbounded sequence of tuple. A
tuple is a list of values and each value can be any type as long as
the values are serializable. Tuples in Storm are dynamically typed

http://www.slideshare.net/KrishnaGade2/storm-at-twitter
http://www.slideshare.net/KrishnaGade2/storm-at-twitter

12 samoa developer’s guide

which means the type of each value need not be declared. Example
of a tuple is {height, weight} tuple which consists of height value
and weight value. These values logically should be a double or float
but since they are dynamic types, the tuple can contain any data type.
Therefore, it is the responsibility of Storm users to ensure that a tuple
contains correct type as intended.

A spout in Storm is a source of streams. Spouts typically read from
external sources such as kestrel/kafka queues, http server logs or Twit-
ter streaming APIs. A bolt in Storm is a consumer of one or more input
streams. Bolts are able to perform several functions for the consumed
input stream such as filtering of tuples, aggregation of tuples, joining
multiple streams, and communication with external entities (such as
caches or databases). Storm utilizes pull model in transferring tuple
between spouts and bolts i.e. each bolt pulls tuples from the source
components (which can be other bolts or spouts). This characteris-
tic implies that loss of tuples only happens in spouts when they are
unable to keep up with external event rates.

stream A

..
..

stream B
S1

S2

B1

B2

B3

B5

B4

stores useful information

data
storage

Figure 2.5: Example of Storm Topology

A topology in Storm is a network of spouts, bolts and streams that
forms a directed-acyclic-graph. Figure 2.4 shows the example of a
topology in Storm. There are two spouts(S1 and S2) and five bolts(B1
to B5). A spout can send tuples to more than one different bolts. More-
over, one or more streams can arrive to a single bolt. Refer to figure 2.4,
bolt B1 processes stream A and produces stream B. Bolt B4 consumes
stream B and communicates with external storage to store useful in-
formation such as the current state of the bolt.

Figure 2.4 shows a Storm cluster which consists of these following
components: one nimbus, two supervisors, three workers for each super-
visor and a ZooKeeper cluster. A nimbus is the master node in Storm

scalable advanced massive online analysis 13

w1 w2 w3 w1 w2 w3

supervisor supervisor

nimbus
master node

slave nodes

topology submission

ZooKeeper

Figure 2.6: Storm Cluster

that acts as entry point to submit topologies and code (packaged as
jar) for execution on the cluster. It distributes the code around the
cluster via supervisors. A supervisor runs on slave node and it coor-
dinates with ZooKeeper to manage the workers. A worker in Storm
corresponds to a JVM process that executes a subset of a topology. Fig-
ure 2.4 shows three workers (w1, w2, w3) in each supervisor. A worker
comprises of several executors and tasks. An executor corresponds to
a thread spawned by a worker and it consists of one or more tasks
from the same type of bolt or spout. A task performs the actual data
processing based on spout or bolt implementations. Storm cluster uses
ZooKeeper cluster to perform coordination functionalities by storing
the configurations of Storm workers.

To determine the partitioning of streams among the correspond-
ing bolt’s tasks, Storm utilizes stream groupings mechanisms. Storm
allows users to provide their own implementation and grouping. Fur-
thermore, Storm also provides several default grouping mechanisms,
such as:

1. shuffle grouping, in which Storm performs randomized round
robin. Shuffle grouping results in the same number of tuples re-
ceived by each task in the corresponding bolt.

2. fields grouping, which partitions the stream based on the values
of one or more fields specified by the grouping. For example, a
stream can be partitioned by an "id" value hence a tuple with the
same id value will always arrive to the same task.

3. all grouping, which replicates the tuple to all tasks in the corre-
sponding bolt.

4. global grouping, which sends all tuples in a stream in to only one
task.

14 samoa developer’s guide

5. direct grouping, which sends each tuple directly to a task based
on the provided task id.

Design

 pkg

ProcessingItem
EntranceProcessingItem

StormProcessingItem

<<instantiate>>

StormEntranceProcessingItem

Stream

+ put(contentEvent : ContentEvent) : void
+ getInputId() : void
+ getOutputId() : String

<<abstract>>
StormStream

StormSpoutStream StormBoltStream

StormEntranceSpout ProcessingItemBolt

+ getId() : String
+ createStream() : StormStream
+ addToTopology(topology : StormTopology, parallelismHint : int) : void

<<interface>>
StormTopologyNode

BaseRichBoltBaseRichSpout

Figure 2.7: samoa-storm Class Diagram

In order to integrate Storm components to SAMOA, we need to es-
tablish relation between Storm classes and the existing SAMOA com-
ponents. Figure 2.4 shows the class diagram of our proposed imple-
mentation. In this section we refer our implementation in integrating
Storm into SAMOA as samoa-storm. Samoa-storm consists of concrete
implementation of processing items, they are StormEntranceProcessingItem
and StormProcessingItem. Both of them also implement StormTopologyNode
to provide common functionalities in creating StormStream and in gen-
erating unique identification. A StormEntranceProcessingItem corre-
sponds with a spout with composition relation. Similarly, a StormProcessingItem

corresponds to a bolt with composition relation. In both cases, com-
position is favored to inheritance because Storm differentiates between
the classes that help constructing the topology and the classes that ex-
ecute in the cluster. If PIs are subclasses of Storm components (spouts
or bolts), we will need to create extra classes to help constructing the
topology and it may increase the complexity of the layer.

In samoa-storm, StormEntranceProcessingItem and StormProcessingItem

are the ones which construct topology. And their corresponding Storm
components, StormEntranceSpout and ProcesingItemBolt are the ones
which execute in the cluster.

scalable advanced massive online analysis 15

A StormStream is an abstract class that represents implementation of
SAMOA stream. It has an abstract method called put to send content
events into destination PI. Samoa-storm uses abstract class because
spouts and bolts have a different way of sending tuples into destina-
tion bolts. A StormStream basically is a container for stream identifica-
tion strings and Storm specific classes to send tuples into destination
PIs. Each StormStream has a string as its unique identification(ID).
However, it needs to expose two types of identifications: input ID and
output ID. Samoa-storm uses the input ID to connect a bolt into an-
other bolt or a spout when building a topology. An input ID comprises
of the unique ID of processing item in which the stream is associated
to, and the stream’s unique ID. The reason why an input ID consists of
two IDs is that Storm needs both IDs to uniquely identify connection
of a bolt into a stream. An output ID only consists of the unique ID of
StormStream and Storm uses the output ID to declare a stream using
Storm APIs.

A StormSpoutStream is a concrete implementation of StormStream
that is used by a StormEntranceProcessingItem to send content events.
The put method in StormSpoutStream puts the content events into
a StormEntranceSpout’s queue and since Storm utilizes pull model,
Storm starts sending the content event by clearing this queue. On the
other hand, a StormProcessingItem uses a StormBoltStream to send
content events to another StormProcessingItem. StormBoltStream uti-
lizes bolt’s OutputCollector to perform this functionality.

2.5 Apache S4 Integration to SAMOA

Apache S4 (Simple Scalable Streaming System) is a distributed SPE
based on the MapReduce model and uses concepts of the Actors model
to process data events. It uses Processing Elements (PEs) which are
independent entities that consumes and emits keyed data events in
messages.

Apache S4 is intended to be an open-source general purpose stream
computing platform with a simple programming interface. The basic
design principles take into account high availability, scalability, low
latency and decentralized architecture2. The distributed an symmetric 2 L. Neumeyer, B. Robbins, A. Nair, and

A. Kesari. S4: Distributed stream com-
puting platform. In Data Mining Work-
shops (ICDMW), 2010 IEEE International
Conference on, pages 170–177, 2010

design removes the need for a central master node. The design of
Apache S4 borrows many concepts from IBM’s Stream Processing Core
(SPC) middleware, which is also used for big data analysis 3. The

3 Lisa Amini, Henrique Andrade, Ranjita
Bhagwan, Frank Eskesen, Richard King,
Yoonho Park, and Chitra Venkatramani.
Spc: A distributed, scalable platform for
data mining. In In Proceedings of the
Workshop on Data Mining Standards, Ser-
vices and Platforms, DM-SSP, 2006

messaging is implemented as push-based where events are emitted
into a stream and directed to specific PEs regarding the event keys.
The underlying coordination is done by Zookeeper4 which assigns S4

4 Patrick Hunt, Mahadev Konar,
Flavio P. Junqueira, and Benjamin Reed.
Zookeeper: wait-free coordination for
internet-scale systems. In Proceedings of
the 2010 USENIX conference on USENIX
annual technical conference, USENIX-
ATC’10, pages 11–11, Berkeley, CA,
USA, 2010. USENIX Association

tasks to physical cluster nodes. An internal view of a S4 processing
node is shown in Figure 2.5. The S4 system is built and deployed

16 samoa developer’s guide

in a logical hierarchical model. A deployment of S4 will contain the
following components:

• Cluster: a logical cluster can be set up to deploy many S4 applica-
tions that can be interconnected by different event streams.

• Node: a node is assigned to a logical cluster and will be available
to run a S4 application.

• App: the S4 App runs in a Node and encapsulates tasks that con-
sume and produce event streams. An App contains a graph of PEs
connected by Streams.

• PE Prototype: is a definition of a computation unit which contains
processing logic.

• PE Instance: is a clone of a PE prototype that has a unique key and
state.

• Stream: connects PE instances. A PE emits events in a stream and
consumes events from a stream.

Figure 2.8: S4 processing node internals

The SAMOA-S4 is a built in module specific to plug-in the Apache
S4 distributed stream processing platform. Apache S4 is a general
purpose, distributed, scalable, fault-tolerant, pluggable platform that
allows programmers to develop applications for continuos unbounded
stream of data inspired on the MapReduce and Actors model. S4

core items for building a topology are Processing Elements, Streams and
Events, which can be directly mapped to SAMOAs PIs, Streams and
ContentEvent.

2.6 Example

In practice the use of SAMOA is quite similar as the underlying plat-
forms where the developer implements the business rules in the pro-
cessing items and connect them by streams. A different aspect is that
the logic implemented in the Processor instead of the PI directly; this
is a design pattern where the PI is a wrapper allowing the processor
to run in any platform. One detail to keep in mind is that once im-
plemented for SAMOA the code can run on any platform which has

scalable advanced massive online analysis 17

an adapter. The following code snippet demonstrates the simplicity
of the SAMOA-API. This code builds a simple source entrance PI and
one other PI connected by a stream.

TopologyBuilder topologyBuilder = new TopologyBuilder();

sourceProcessor = new SourceProcessor();

TopologyStarter starter = new TopologyStarter(sourceProcessor);

topologyBuilder.addEntranceProcessor(sourceProcessor, starter);

Stream stream = topologyBuilder.createStream(sourceProcessor);

Processor processor = new new Processor();

topologyBuilder.addProcessor(processor);

processor.connectInputKey(stream);

SAMOA	
 Topology	

PI	

PI	

PI	
 PI	

Task	

EPI	

STREAM	

SOURCE	

Stream	

PE	

PE	

PE	

PE	

Stream	

PE	

S4	
 App	

STREAM	

SOURCE	

MAP	

Figure 2.9: Mapping of SAMOA ele-
ments to S4 platform.

With this simple API the topology can be extended to create larger
graphs of data flow. This model provides a greater flexibility for de-
signing distributed algorithms than the MapReduce model, which can
only have sequences of mappers and reducers. Therefore it is easier
to adapt common algorithms to S4, consequently to SAMOA. The Fig-
ure 2.6 illustrates how the SAMOA framework maps to the S4 system.
Notice that the task present in SAMOA is a wrapper for the PIs and
stream graph, whereas in S4 this would be implemented directly on
the App component.

3
Decision Tree Induction

This chapter presents some backgrounds in decision trees. Section 3.1
presents the basic decision tree induction. The following section, sec-
tion 3.2, discusses the necessary additional techniques to make the ba-
sic algorithm ready for production environments. Section 3.3 presents
the corresponding algorithm for streaming settings. In addition, sec-
tion ?? explains some extensions for the streaming decision tree induc-
tion algorithm.

A decision tree consists of nodes, branches and leaves as shown in Fig-
ure 3. A node consists of a question regarding a value of an attribute,
for example node n in Figure 3 has a question: "is attr_one greater
than 5?". We refer to this kind of node as split-node. Branch is a connec-
tion between nodes that is established based on the answer of its cor-
responding question. The aforementioned node n has two branches:
"True" branch and "False" branch. Leaf is an end-point in the tree. The
decision tree uses the leaf to predict the class of given data by utiliz-
ing several predictor functions such as majority-class, or naive Bayes
classifier. Sections 3.1 to 3.2 discuss the basic tree-induction process
in more details.

True False

Node (split node)

Branch

Leaf

Sample question:
attr_one > 5?

Root

Leaf determines the class of an
instance.

Figure 3.1: Components of Decision Tree

20 samoa developer’s guide

3.1 Basic Algorithm

Algorithm 3.1 shows the generic description of decision tree induction.
The decision tree induction algorithm begins with an empty tree(line
1). Since this algorithm is a recursive algorithm, it needs to have the
termination condition shown in line 2 to 4. If the algorithm does not
terminate, it continues by inducing a root node that considers the en-
tire dataset for growing the tree. For the root node, the algorithm
processes each datum in the dataset D by iterating over all available
attributes (line 5 to 7) and choosing the attribute with best information-
theoretic criteria (abest in line 8). Section 3.1 and 3.1 further explain
the calculation of the criteria. After the algorithms decides on abest,
it creates a split-node that uses abest to test each datum in the dataset
(line 9). This testing process induces sub-dataset Dv (line 10). The algo-
rithm continues by recursively processing each sub-dataset in Dv. This
recursive call produces sub-tree Treev (line 11 and 12). The algorithm
then attaches Treev into its corresponding branch in the corresponding
split-node (line 13).

Algorithm 3.1 DecisionTreeInduction(D)
Input: D, which is attribute-valued dataset

1: Tree = {}
2: if D is "pure" OR we satisfy other stopping criteria then
3: terminate
4: end if
5: for all attribute a ∈ D do
6: Compare information-theoretic criteria if we split on a
7: end for
8: Obtain attribute with best information-theoretic criteria, abest

9: Add a split-node that splits on abest into
10: Induce sub-dataset of D based on abest into Dv

11: for all Dv do
12: Treev = DecisionTreeInduction(Dv)
13: Attach Treev into corresponding branch in the split-node.
14: end for
15: return Tree

Sample Dataset

Given the weather dataset 1 in table 3.1, we want to predict whether 1 Ian H Witten and Eibe Frank. Data Min-
ing: Practical machine learning tools and
techniques. Morgan Kaufmann, 2005

we should play or not play outside. The attributes are Outlook, Temper-
ature, Humidity, Windy and ID code. Each attribute has its own possible

decision tree induction 21

values, for example Outlook has three possible values: sunny, overcast
and rainy. The output class is Play and it has two values: yes and no. In
this example, the algorithm uses all the data for training and building
the model.

ID code Outlook Temperature Humidity Windy Play
a sunny hot high false no
b sunny hot high true no
c overcast hot high false yes
d rainy mild high false yes
e rainy cool normal false yes
f rainy cool normal true no
g overcast cool normal true yes
h sunny mild high false no
i sunny cool normal false yes
j rainy mild normal false yes
k sunny mild normal true yes
l overcast mild high true yes
m overcast hot normal false yes
n rainy mild high true no

Table 3.1: Weather Dataset

Ignoring the ID code attribute, we have four possible splits in grow-
ing the tree’s root shown in Figure 3.1. Section 3.1 and 3.1 explain
how the algorithm chooses the best attribute.

Information Gain

The algorithm needs to decide which split should be used to grow
the tree. One option is to use the attribute with the highest purity mea-
sure. The algorithm measures the attribute purity in term of information
value. To quantify this measure, the algorithm utilizes entropy formula.
Given a random variable that takes c values with probabilities p1, p2, ...
pc, the algorithm calculates the information value with this following
entropy formula:

c

∑
i=1
−pilog2 pi

Refer to Figure 3.1, the algorithm derives the information values for
Outlook attribute with following steps:

1. Outlook has three outcomes: sunny, overcast and rainy. The algo-
rithm needs to calculate the information values for each outcome.

2. Outcome sunny has two occurrences of output class yes, and three
occurrences of no. The information value of sunny is in f o([2, 3]) =

22 samoa developer’s guide

outlook

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

sunny overcast rainy

temperature

yes
yes
no
no

yes
yes
yes
yes
no
no

yes
yes
yes
no

hot mild cool

humidity

yes
yes
yes
no
no
no
no

yes
yes
yes
yes
yes
yes
no

high normal

windy

yes
yes
yes
yes
yes
yes
no
no

yes
yes
yes
no
no
no

yes no

(a) (b) (c) (d)

Figure 3.2: Possible Splits for the Root in
Weather Dataset

−p1log2 p1 − p2log2 p2 where p1 is the probability of yes (with value
of 2

2+3 = 2
5) and p2 is the probability of "no" in sunny outlook

(with value of 3
2+3 = 3

5). The algorithm uses both p values into the
entropy formula to obtain sunny’s information value: in f o([2, 3]) =
− 2

5 log 2
5
− 3

5 log2
3
5 = 0.971 bits.

3. The algorithm repeats the calculation for other outcomes. Outcome
overcast has four yes and zero no, hence its information value is:
in f o([4, 0]) = 0.0 bits. Outcome rainy has three yes and two no,
hence its information values is: in f o[(3, 2)] = 0.971 bits.

4. The next step for the algorithm is to calculate the expected amount
of information when it chooses Outlook to split, by using this cal-
culation: in f o([2, 3], [4, 0], [3, 2]) = 5

14 in f o([2, 3]) + 4
14 in f o([4, 0]) +

5
14 in f o([3, 2]) = 0.693 bits.

The next step is to calculate the information gain obtained by split-
ting on a specific attribute. The algorithm obtains the gain by subtract-
ing the entropy of splitting on a specific attribute with the entropy of
no-split case.

Continuing the Outlook attribute sample calculation, the algorithm
calculates entropy for no-split case: in f o([9, 5]) = 0.940 bits. Hence,
the information gain for Outlook attribute is gain(Outlook) = in f o([9, 5])−
in f o([2, 3], [4, 0], [3, 2]) = 0.247 bits.

Refer to the sample case in Table 3.1 and Figure 3.1, the algorithm
produces these following gains for each split:

• gain(Outlook) = 0.247 bits

decision tree induction 23

• gain(Temperature) = 0.029 bits

• gain(Humidity) = 0.152 bits

• gain(Windy) = 0.048 bits

Outlook has the highest information gain, hence the algorithm chooses
attribute Outlook to grow the tree and split the node. The algorithm
repeats this process until it satisfies one of the terminating conditions
such as the node is pure (i.e the node only contains one type of class
output value).

Gain Ratio

The algorithm utilizes gain ratio to reduce the tendency of informa-
tion gain to choose attributes with higher number of branches. This
tendency causes the model to overfit the training set, i.e. the model
performs very well for the learning phase but it perform poorly in
predicting the class of unknown instances. The following example
discusses gain ratio calculation.

Refer to table 3.1, we include ID code attribute in our calculation.
Therefore, the algorithm has an additional split possibility as shown
in Figure 3.1.

idcode

no no yes

a b c

yes no

m n...

Figure 3.3: Possible Split for ID code At-
tribute

This split will have entropy value of 0, hence the information gain is
0.940 bits. This information gain is higher than Outlook’s information
gain and the algorithm will choose ID code to grow the tree. This
choice causes the model to overfit the training dataset. To alleviate
this problem, the algorithm utilizes gain ratio.

The algorithm calculates the gain ratio by including the number
and size of the resulting daughter nodes but ignoring any information

24 samoa developer’s guide

about the daughter nodes’ class distribution. Refer to ID code attribute,
the algorithm calculates the gain ratio with the following steps:

1. The algorithm calculates the information value for ID code attribute
while ignoring the class distribution for the attribute: in f o[(1, 1, 1, 1....1)] =
− 1

14 log2
1

14 × 14 = 3.807 bits.

2. Next, it calculates the gain ratio by using this formula: gain_ratio(ID code) =
gain(ID code)

in f o[(1,1,1,1...1)] =
0.940
3.807 = 0.247.

For Outlook attribute, the corresponding gain ratio calculation is:

1. Refer to Figure 3.1, Outlook attribute has five class outputs in sunny,
four class outputs in overcast, and five class outputs in rainy. Hence,
the algorithm calculates the information value for Outlook attribute
while ignoring the class distribution for the attribute: in f o[(5, 4, 5)] =
− 5

14 log2
5

14 −
4

14 log2
4

14 −
5

14 log2
5

14 = 1.577 bits.

2. gain_ratio(Outlook) = gain(Outlook)
in f o[(5,4,5)] = 0.247

1.577 = 0.157.

The gain ratios for every attribute in this example are:

• gain_ratio(ID code) = 0.247

• gain_ratio(Outlook) = 0.157

• gain_ratio(Temperature) = 0.019

• gain_ratio(Humidity) = 0.152

• gain_ratio(Windy) = 0.049

Based on above calculation, the algorithm still chooses ID code to
split the node but the gain ratio reduces the ID code’s advantages to
the other attributes. Humidity attribute is now very close to Outlook
attribute because it splits the tree into less branches than Outlook at-
tribute splits.

3.2 Additional Techniques in Decision Tree Induction

Unfortunately, information gain and gain ratio are not enough to build
a decision tree that suits production settings. One example of well-
known decision tree implementation is C4.5 2. This section explain 2 John Ross Quinlan. C4.5: Programs for

Machine Learning. Morgan Kaufmann,
1993

further techniques in C4.5 to make the algorithm suitable for produc-
tion settings.

Quinlan, the author of C4.5, proposes tree pruning technique to
avoid overfitting by reducing the number of nodes in the tree. C4.5
commonly performs this technique in a single bottom-up pass after

decision tree induction 25

the tree is fully grown. Quinlan introduces pessimistic pruning that es-
timates the error rate of a node based on the estimated errors of its
sub-branches. If the estimated error of a node is less than its sub-
branches’ error, then pessimistic pruning uses the node to replace its
sub-branches.

The next technique is in term of continuous attributes handling.
Continuous attributes require the algorithm to choose threshold values
to determine the number of splits. To handle this requirement, C4.5
utilizes only the information gain technique in choosing the threshold.
For choosing the attribute, C4.5 still uses the information gain and the
gain ratio techniques altogether.

C4.5 also has several possibilities in handling missing attribute val-
ues during learning and testing the tree. There are three scenarios
when C4.5 needs to handle the missing values properly, they are:

• When comparing attributes to split and some attributes have miss-
ing values.

• After C4.5 splits a node into several branches, a training datum with
missing values arrives into the split node and the split node can not
associate the datum with any of its branches.

• When C4.5 attempts to classify a testing datum with missing values
but it can not associate the datum with any of the available branches
in a split node.

Quinlan presents a coding scheme in 3 and 4 to deal with each of 3 John Ross Quinlan. Decision Trees as
Probabilistic Classifiers. In Proceedings of
the Fourth International Workshop on Ma-
chine Learning, pages 31–37, 1987

4 John Ross Quinlan. Unknown Attribute
Values in Induction. In Proceedings of
the sixth international workshop on Machine
learning, pages 164–168, 1989

the aforementioned scenarios. Examples of the coding scheme are: (I)
to ignore training instances with missing values and (C) to substitute
the missing values with the most common value for nominal attributes
or with the mean of the known values for the numeric attributes.

3.3 Very Fast Decision Tree (VFDT) Induction

Very Fast Decision Tree (VFDT) 5 was the pioneer of streaming deci- 5 Pedro Domingos and Geoff Hulten.
Mining High-Speed Data Streams. In
Proceedings of the sixth ACM SIGKDD in-
ternational conference on Knowledge discov-
ery and data mining, KDD ’00, pages 71–
80, New York, NY, USA, 2000. ACM

sion tree induction. VFDT fulfills the necessary requirements in han-
dling data streams in an efficient way. The previous streaming decision
tree algorithms that introduced before VFDT does not have this char-
acteristic. VFDT is one of the fundamental concepts in our work, hence
this section further discusses the algorithm.

This section refers the resulting model from VFDT as Hoeffding tree
and the induction algorithm as Hoeffding tree induction. We refer to data
as instances, hence we also refer datum as a single instance. Moreover,
this section refers the whole implementation of VFDT as VFDT.

Algorithm 3.2 shows the generic description of Hoeffding tree in-
duction. During the learning phase, VFDT starts Hoeffding tree with

26 samoa developer’s guide

Algorithm 3.2 HoeffdingTreeInduction(E, HT)
Input: E is a training instance
Input: HT is the current state of the decision tree

1: Use HT to sort E into a leaf l
2: Update sufficient statistic in l
3: Increment the number of instances seen at l (which is nl)
4: if nl mod nmin = 0 and not all instances seen at l belong to the

same class then
5: For each attribute, compute Gl(Xi)

6: Find Xa, which is the attribute with highest Gl

7: Find Xb, which is the attribute with second highest Gl

8: Compute Hoeffding bound ε =
√

R2 ln(1/δ)
2nl

9: if Xa 6= X∅ and (Gl(Xa)− Gl(Xb) > ε or ε < τ) then
10: Replace l with a split-node on Xa

11: for all branches of the split do
12: Add a new leaf with derived sufficient statistic from the

split node
13: end for
14: end if
15: end if

only a single node. For each training instance E that arrives into the
tree, VFDT invokes Hoeffding tree induction algorithm. The algo-
rithms starts by sorting the instance into a leaf l(line 1). This leaf is
a learning leaf, therefore the algorithm needs to update the sufficient
statistic in l(line 2). In this case, the sufficient statistic is the class dis-
tribution for each attribute value. The algorithms also increment the
number of instances (nl) seen at lea l based on E’s weight (line 3). One
instance is not significant enough to grow the tree, therefore the al-
gorithm only grows the tree every certain number of instances (nmin).
The algorithm does not grow the trees if all the data seen at l belong to
the same class. Line 4 shows these two conditions to decide whether
to grow or not to grow the tree.

In this algorithm, growing the tree means attempting to split the
node. To perform the split, the algorithm iterates through each at-
tribute and calculate the corresponding information-theoretic criteria(Gl(Xi)

in line 5). It also computes the information-theoretic criteria for no-
split scenario (X∅). The authors of VFDT refers this inclusion of no-
split scenario with term pre-pruning.

The algorithm then chooses the best(Xa) and the second best(Xb))
attributes based on the criteria (line 6 and 7). Using these chosen
attributes, the algorithm computes the Hoeffding bound to determine
whether it needs to split the node or not. Line 9 shows the complete

decision tree induction 27

condition to split the node. If the best attribute is the no-split scenario
(X∅), then the algorithm does not perform the split. The algorithm
uses tie-breaking τ mechanism to handle the case where the difference
of information gain between Xa and Xb) is very small(∆Gl < ε < τ).
If the algorithm splits the node, then it replaces the leaf l with a split
node and it creates the corresponding leaves based on the best attribute
(line 10 to 13).

To calculate Hoeffding bound, the algorithm uses these following
parameters:

• r = real-valued random variable,with range R.

• n = number of independent observations have been made.

• r̄ = mean value computed from n independent observations.

The Hoeffding bound determines that the true mean of the variable
is at least r̄ − ε with probability 1− δ. And, ε is calculated with this
following formula:

ε =

√
R2ln(1/δ)

2n
What makes Hoeffding bound attractive is its ability to give the

same results regardless the probability distribution generating the ob-
servations. This attractiveness comes with one drawback which is dif-
ferent number of observations to reach certain values of δ and ε de-
pending on the probability distributions of the data.

VFDT has no termination condition since it is a streaming algo-
rithm. The tree may grow infinitely and this contradicts one of the re-
quirements for algorithm for streaming setting (require limited amount
of memory). To satisfy the requirement of limited memory usage, the
authors of VFDT introduce node-limiting technique. This technique
calculates the promise for each active learning leaf l. A promise of an
active learning leaf in VFDT is defined as an estimated upper-bound
of the error reduction achieved by keeping the leaf active. Based on
the promise, the algorithm may choose to deactivate leaves with low
promise when the tree reaches the memory limit. Although the leaves
are inactive, VFDT still monitors the promise for each inactive leaf.
The reason is that VFDT may activate the inactive leaves when their
promises are higher than currently active leaves’ promises. Besides
the node-limiting technique, the VFDT authors introduce also poor-
attribute-removal technique to reduce VFDT memory usage. VFDT
removes the attributes that does not look promising while splitting,
hence the statistic associated with the removed attribute can be deleted
from the memory.

4
Distributed Streaming Decision Tree Induction

This chapter presents Vertical Hoeffding Tree (VHT), a parallelizing
streaming decision tree induction for distributed environment. Sec-
tion 4.1 reviews the available types of parallelism and section 4.2 ex-
plains the algorithm available in SAMOA.

4.1 Parallelism Type

In this text, parallelism type refers to the way an algorithm performs
parallelization in streaming decision tree induction. Understanding
the available parallelism types is important since it is the basis of our
proposed distributed algorithm. This section presents three types of
parallelism.

For section 4.1 to 4.1, we need to define some terminologies in or-
der to make the explanation concise and clear. A processing item(PI) is
an unit of computation element that executes some part of the algo-
rithm. One computation element can be a node, a thread or a process
depending on the underlying distributed streaming computation plat-
form. An user is a client who executes the algorithm. An user could be
a human being or a software component that executes the algorithm
such as a machine learning framework. We define an instance as a da-
tum in the training data. Since the context is streaming decision tree
induction, the training data consists of a set of instances that arrive
one at a time to the algorithm.

Horizontal Parallelism

Figure 4.1 shows the implementation of horizontal parallelism for dis-
tributed streaming decision tree induction. Source processing item
sends instances into the distributed algorithm. This component may
comprise of an instance generator, or it simply forwards object from
external source such as Twitter firehose. A model-aggregator PI con-
sists of the trained model which is a global decision tree in our case.

30 samoa developer’s guide

subset of instances periodic local-statistic aggregation

model-aggregator PI

local-statistic PI

source PI

Figure 4.1: Horizontal Parallelism

A local-statistic processing PI contains local decision tree. The dis-
tributed algorithm only trains the local decision trees with subset of
all instances that arrive into the local-statistic PIs. The algorithm peri-
odically aggregates local statistics (the statistics in local decision tree)
into the statistics in global decision tree. User determines the interval
period by setting a parameter in the distributed algorithm. After the
aggregation finishes, the algorithm needs to update each decision tree
in local-statistics PIs.

In horizontal parallelism, the algorithm distributes the arriving in-
stances to local-statistic PIs based on horizontal data partitioning, which
means it partitions the arriving instances equally among the number
of local-statistic PI. For example, if there are 100 arriving instances and
there are 5 local-statistics PIs, then each local-statistic PI receives 20 in-
stances. One way to achieve this is to distribute the arriving instances
in round-robin manner. An user determines the parallelism level of
the algorithm by setting the number of local-statistic PI to process the
arriving instances. If arrival rate of the instances exceeds the total
processing rate of the local-statistic PIs, then user should increase the
parallelism level.

Horizontal parallelism has several advantages. It is appropriate for
scenarios with very high arrival rates. The algorithm also observes the
parallelism immediately. User is able to easily add more processing
power by adding more PI to cope with arriving instances. However,
horizontal parallelism needs high amount of available memory since
the algorithm replicates the model in the local-statistic PIs. It is also
not suitable for cases where the arriving instance has high number of
attributes since the algorithm spends most of its time to calculate the
information gain for each attribute. The algorithm introduces addi-

distributed streaming decision tree induction 31

tional complexity in propagating the updates from global model into
local model in order to keep the model consistency between each local-
statistic PI and model-aggregator PI.

Vertical Parallelism

subset of attributes

aggregate local statistic to global decision tree

model-aggregator PI

local-statistic PI

source PI

instance

Figure 4.2: Vertical Parallelism

Figure 4.1 shows the implementation of vertical parallelism for dis-
tributed streaming decision tree induction. Source processing item
serves the same purpose as the one in horizontal parallelism (sec-
tion 4.1). However, model-aggregator PI and local-statistic PI have
different roles compared to the ones in section 4.1.

In vertical parallelism, local-statistic PIs do not have the local model
as in horizontal parallelism. Each local-statistic PI only stores the suf-
ficient statistic of several attributes that are assigned to it and com-
putes the information-theoretic criteria (such as the information gain
and gain ratio) based on the assigned statistic. Model aggregator PI
consists of a global model, but it distributes the instances by their at-
tributes. For example if each instance has 100 attributes and there are
5 local-statistic PIs, then each local-statistic PI receives 20 attributes for
each instance. An user determines the parallelism level of the algo-
rithm by setting the number of local-statistic PI to process the arriving
instances. However, increasing the parallelism level may not necessar-
ily improve the performance since the cost of splitting and distributing
the instance may exceed the benefit.

Vertical parallelism is suitable when arriving instances have high

32 samoa developer’s guide

number of attributes. The reason is that vertical parallelism spends
most of its time in calculating the information gain for each attribute.
This type of instance is commonly found in text mining. Most text
mining algorithms use a dictionary consists of 10000 to 50000 entries.
The text mining algorithms then transform text into instances with
the number of attributes equals to the number of the entries in the
dictionary. Each word in the text correspond to a boolean attribute in
the instances.

Another case where vertical parallelism suits is when the instances
are in the form of documents. A document is almost similar to a row or
a record in relational database system, but it is less rigid compared to
row or record. A document is not required to comply with database
schemas such as primary key and foreign key. Concrete example of a
document is a tweet where each word in a tweet corresponds to one
or more entries in a document. And similar to text mining, docu-
ments have a characteristic of high number attributes since practically
documents are often implemented as dictionaries which have 10000 to
50000 entries. Since each entry corresponds to an attribute, the algo-
rithm needs to process attributes in the magnitude of ten thousands.

One advantage of vertical parallelism is the algorithm implementa-
tion uses lesser total memory compared to horizontal parallelism since
it does not replicate the model into local-statistics PI. However, verti-
cal parallelism is not suitable when the number of attributes in the
attributes is not high enough so that the cost of splitting and distribut-
ing is higher than the benefit obtained by the parallelism.

Task Parallelism

Figure 4.1 shows the task parallelism implementation for distributed
streaming decision tree induction. We define a task as a specific portion
of the algorithm. In streaming decision tree induction, the task consists
of: sort the arriving instance into correct leaf, update sufficient statistic,
and attempt to split the node.

Task parallelism consists of sorter processing item and updater-
splitter processing item. This parallelism distributes the model into
the available processing items. Sorter PI consists of part of the de-
cision tree which is a subtree and connection to another subtree as
shown in figure 4.1. It sorts the arriving instance into correct leaf. If
the leaf does not exist in the part that the sorter PI owns, the sorter PI
forwards the instance into the correct sorter or the updater-splitter PI
that contains the path to appropriate leaf. Updater-splitter PI consists
of a subtree that has leaves. This PI updates sufficient statistic for the
leaf and splits the leaf when the leaf satisfies splitting condition.

Figure 4.1 shows the induction based on task parallelism. This in-

distributed streaming decision tree induction 33

sorter PIsource PI

instance

updater-splitter PI

Figure 4.3: Task Parallelism

root

split-node

subtree’s root

subtree’s root

leaf

leaf

leaf

leaf

leaf

leaf

split-node

split-node

split-node

split-node

split-node

split-node

sorter PI
updater-splitter PI

Figure 4.4: Sorter PI in terms of Decision
Tree Model

34 samoa developer’s guide

instance

updater-splitter PIsource PI

instance

source PI

updater-splitter PI

instance

source PI

updater-splitter PI

sorter PI

sorter PI

updater-splitter PI

(i) induction starts with an updater-splitter PI

(ii) the updater-splitter PI in step 1 converts to sorter PI, when the model
reaches the memory limit

(iii) the algorithm creates new updater-splitter Pis that are used to extend
the model in sorter PI

(iv) the algorithm repeats step (ii) and (iii) whenever the decision tree (or
subtree) in updater-splitter PI reaches memory limit.

Figure 4.5: Decision Tree Induction
based on Task Parallelism

distributed streaming decision tree induction 35

duction process starts with one updater-splitter PI in step (i). This PI
grows the tree until the tree reaches memory limit. When this happens,
the PI converts itself into sorter PI and it creates new updater-splitter
PIs to represent subtrees generated from its leaves, as shown in step
(ii) and (iii). The algorithm repeats the process until it uses all avail-
able processing items. User configures the number of PIs available for
the algorithm.

Task parallelism is suitable when the model size is very high and
the resulting model could not fit in the available memory. However,
the algorithm does not observe the parallelism immediately. Only after
the algorithm distributes the model, it can observe the parallelism.

4.2 Proposed Algorithm

This section discusses our proposed algorithm for implementing dis-
tributed and parallel streaming decision tree induction. The algorithm
extends VFDT algorithm presented in section 3.3 with capabilities of
performing streaming decision tree induction in distributed and par-
allel manner.

Chosen Parallelism Type

In order to choose which parallelism type, we revisit the use-case for
the proposed algorithm. We derive the use-case by examining the need
of Web-mining research group in Yahoo Labs Barcelona.

The use-case for our distributed streaming tree induction algorithm
is to perform document-streaming and text-mining classification. As
section 4.1 describes, both cases involve instances with high number
of attributes. Given this use case, vertical parallelism appears to be the
suitable choice for our implementation.

Vertical Hoeffding Tree

In this section, we refer our proposed algorithm as Vertical Hoeffding
Tree(VHT). We reuse some definitions from section 4.1 for processing
item(PI), instance and user. We define additional terms to make the
explanation concise and clear. A stream is a connection between pro-
cessing items that transports messages from a PI to the corresponding
destination PIs. A content event represents a message transmitted by a
PI via one or more streams.

Figure 4.2 shows the VHT diagram. Each circle represents a pro-
cessing item. The number inside the circle represents the parallelism
level. A model-aggregator PI consists of the decision tree model. It
connects to local-statistic PI via attribute stream and control stream.

36 samoa developer’s guide

result

1

source PI

1

model-aggregator PI local-statistic PI

n

evaluator PI

1
source

attribute

computation-result

control

Figure 4.6: Vertical Hoeffding Tree

As we described in section 4.1 about vertical parallelism, the model-
aggregator PI splits instances based on attribute and each local-statistic
PI contains local statistic for attributes that assigned to it. Model-
aggregator PI sends the split instances via attribute stream and it
sends control messages to ask local-statistic PI to perform computa-
tion via control stream. Users configure n, which is the parallelism
level of the algorithm. The parallelism level is translated into the num-
ber of local-statistic PIs in the algorithm.

Model-aggregator PI sends the classification result via result stream
to an evaluator PI for classifier or other destination PI. Evaluator PI
performs evaluation of the algorithm and the evaluation could be in
term of accuracy and throughput. Incoming instances to the model-
aggregator PI arrive via source stream. The calculation results from lo-
cal statistic arrive to the model-aggregator PI via computation-result

stream.
Algorithm 4.1 shows the pseudocode of the model-aggregator PI

in learning phase. The model-aggregator PI has similar steps as learn-
ing in VFDT except on the line 2 and 5. Model-aggregator PI receives
instance content events from source PI and it extracts the instances
from the content events. Then, model-aggregator PI needs to split the
instances based on the attribute and send attribute content event via
attribute stream to update the sufficient statistic for the correspond-
ing leaf (line 2). Attribute content event consists of leaf ID, attribute
ID, attribute value, class value, and instance weight. Leaf ID and at-
tribute ID are used by the algorithm to route the content event into
correct local-statistic PIs. And attribute value, class value and instance
weight are stored as local statistic in local-statistic PIs.

When a local-statistic PI receives attribute content event, it up-
dates its corresponding local statistic. To perform this functionality, it
keeps a data structure that store local statistic based on leaf ID and

distributed streaming decision tree induction 37

Algorithm 4.1 model-aggregator PI:
VerticalHoeffdingTreeInduction(E, VHT_tree)
Input: E is a training instance from source PI, wrapped in instance

content event
Input: VHT_tree is the current state of the decision tree in model-

aggregator PI
1: Use VHT_tree to sort E into a leaf ls
2: Send attribute content events to local-statistic PIs
3: Increment the number of instances seen at l (which is nl)
4: if nl mod nmin = 0 and not all instances seen at l belong to the

same class then
5: Add l into the list of splitting leaves
6: Send compute content event with the id of leaf l to all local-

statistic PIs
7: end if

attribute ID. The local statistic here is the attribute value, weight, and
the class value. Algorithm 4.2 shows this functionality.

Algorithm 4.2 local-statistic PI: UpdateLocalStatistic(attribute,
local_statistic)
Input: attribute is an attribute content event
Input: local_statistic is the local statistic, could be implemented as

Table < lea f _id, attribute_id >

1: Update local_statistic with data in attribute: attribute value, class
value and instance weights

When it is the time to grow the tree(algorithm 4.1 line 4), model-
aggregator PI sends compute content event via control stream to local-
statistic PI. Upon receiving compute content event, each local-statistic
PI calculates Gl(Xi) for its assigned attributes to determines the best
and second best attributes. At this point,the model-aggregator PI may
choose to continue processing incoming testing instance or to wait un-
til it receives all the computation results from local-statistic PI.

Upon receiving compute content event, local-statistic PI calculates
Gl(Xi) for each attribute to find the best and the second best attributes.
Then it sends the best(Xlocal

a) and second best(Xlocal
b) attributes back

to the model-aggregator PI via computation-result stream. These
attributes are contained in local-result content event. Algorithm 4.3
shows this functionality.

The next part of the algorithm is to update the model once it receives
all computation results from local statistic. This functionality is per-
formed in model-aggregator PI. Algorithm 4.4 shows the pseudocode
for this functionality. Whenever the algorithm receives a local-result

38 samoa developer’s guide

Algorithm 4.3 local-statistic PI: ReceiveComputeMessage(compute,
local_statistic)
Input: compute is an compute content event
Input: local_statistic is the local statistic, could be implemented as

Table < lea f _id, attribute_id >

1: Get leaf l ID from compute content event
2: For each attribute belongs to leaf l in local statistic, compute Gl(Xi)

3: Find Xlocal
a , which is the attribute with highest Gl based on the

local statistic
4: Find Xlocal

b , which is the attribute with second highest Gl based on
the local statistic

5: Send Xlocal
a and Xlocal

b using local-result content event to model-
aggregator PI via computation-result stream

content event, it retrieves the correct leaf l from the list of the split-
ting leaves(line 1). Then, it updates the current best attribute(Xa) and
second best attribute(Xb). If all local results have arrived into model-
aggregator PI, the algorithm computes Hoeffding bound and decides
whether to split the leaf l or not. It proceeds to split the node if the
conditions in line 5 are satisfied. These steps in line 4 to 9 are identi-
cal to basic streaming decision tree induction presented in section 3.3.
To handle stragglers, model-aggregator PI has time-out mechanism in
waiting for all computation results. If the time out occurs, the algo-
rithm uses the current Xa and Xb to compute Hoeffding bound and
make splitting decision.

distributed streaming decision tree induction 39

Algorithm 4.4 model-aggregator PI: Receive(local_result, VHT_tree)
Input: local_result is an local-result content event
Input: VHT_tree is the current state of the decision tree in model-

aggregator PI
1: Get correct leaf l from the list of splitting leaves
2: Update Xa and Xb in the splitting leaf l with Xlocal

a and Xlocal
b from

local_result
3: if local_results from all local-statistic PIs received or time out

reached then
4: Compute Hoeffding bound ε =

√
R2 ln(1/δ)

2nl

5: if Xa 6= X∅ and (Gl(Xa)− Gl(Xb) > ε or ε < τ) then
6: Replace l with a split-node on Xa

7: for all branches of the split do
8: Add a new leaf with derived sufficient statistic from the

split node
9: end for

10: end if
11: end if

During testing phase, the model-aggregator PI predicts the class
value of the incoming instances. Algorithm 4.5 shows the pseudocode
for this functionality. Model aggregator PI uses the decision tree model
to sort the newly incoming instance into the correct leaf and use the
leaf to predict the class. Then, it sends the class prediction into the
result stream.

Algorithm 4.5 model-aggregator PI: PredictClassValue(test_instance,
VHT_tree)
Input: test_instance is a newly arriving instance
Input: VHT_tree is the decision tree model

1: Use VHT_tree to sort testinstance into the correct leaf l
2: Use leaf l to predict the class of testinstance
3: Send classification result via result stream

5
Distributed Clustering Design

SAMOA has a distributed clustering algorithm based on the CluS-
tream framework presented by Aggarwal et. al in 1. The decision for 1 Charu C. Aggarwal, Jiawei Han, Jiany-

ong Wang, and Philip S. Yu. A
framework for clustering evolving data
streams. In Proceedings of the 29th interna-
tional conference on Very large data bases -
Volume 29, VLDB ’03, pages 81–92. VLDB
Endowment, 2003

choosing CluStream was due to its good clustering accuracy, dataset
scalability and handling of evolving data streams. The goal was to de-
sign a distributed clustering algorithm in SAMOA that is accurate and
performs as good as the CluStream implementations in other machine
learning tools, such as MOA.

5.1 CluStream Algorithm

CluStream is a framework for clustering evolving data streams effi-
ciently. As mentioned before, the clustering problem aims to partition
a data set into one or more groups of similar objects by using a distance
measure. Since stream clustering cannot maintain all the information
used due to memory limitation and neither revisit past information,
the algorithm has to keep a small summary of the data received. CluS-
tream efficiently deals with this problem by using an online compo-
nent and an offline component. The online component analyses the
data in one-pass and stores the summary statistics, whereas the offline
component can be used by the user for querying the cluster evolution
in time. In order to maintain these summary statistics CluStream uses
a micro-clustering technique. These micro-clusters are further used by
the offline component to create higher level macro-clusters 2. 2 Charu C. Aggarwal, Jiawei Han, Jiany-

ong Wang, and Philip S. Yu. A
framework for clustering evolving data
streams. In Proceedings of the 29th interna-
tional conference on Very large data bases -
Volume 29, VLDB ’03, pages 81–92. VLDB
Endowment, 2003

Every algorithm uses specific data structures to work; in stream
clustering algorithms it is not different. CluStream uses specific data
structures called Cluster Feature(CF) vectors to summarize the large
amount of data on its online phase. This data structure was first in-
troduced in the BIRCH algorithm 3. CF vectors are composed of the 3 Tian Zhang, Raghu Ramakrishnan,

and Miron Livny. Birch: An efficient
data clustering method for very large
databases, 1996

number of data objects (N), the linear sum of data objects (LS) and
the sum of squares of data objects (SS). In more details the LS and SS
are n-dimensional arrays. The CF vectors conserve the properties of
incrementality and additivity, which are used to add points to the CF

42 samoa developer’s guide

vector or merge CF vectors. In CluStream the CF vectors are referred
as micro-clusters with additional time components and called CFT(C)
for a set of points C. The time components are the sum of timestamps
(LST) and the sum of squares timestamp (SST). The incrementality and
additivity properties are presented bellow.
1. Incrementality: A new arriving point x ∈ Rd can be inserted into a

CF vector by updating its statistics summary as follows:

LS← LS + x
SS← SS + x2

N ← N + 1

2. Additivity: A new CF vector can be created by merging two disjoint
vectors CF1 and CF2 as follows:

N = N1 + N2

LS = LS1 + LS2
SS = SS1 + SS2

With these data structures in hand it is possible to compute the
means, the radius and the diameter of clusters as it is represented in
the equations 5.1, 5.2, 5.3.

centroid =
LS
N

(5.1)

radius =

√
SS
N
−
(

LS
N

)2

(5.2)

radius =

√(
2N ∗ SS− 2(LS)2

N(N − 1)

)
(5.3)

The aforementioned properties are used in CluStream to merge or
create micro-clusters. The decision on creating or merging is based on
a boundary factor that is relative to its distance to the closest cluster.
In the case of creating a new micro-cluster the number o clusters has
to be reduced by one to maintain a desired amount of cluster. This
is done to save memory and can be achieved by either removing or
joining old clusters. In this way CluStream can maintain statistical in-
formation of a large amount of dominant micro-clusters over a time
horizon. Further on these micro-clusters are used on an offline phase
of the algorithm to generate higher level macro-clusters.

The offline phase of the algorithm takes as input a time-horizon h
and a number of higher level clusters k. The value of h will deter-
mine how much history has to be covered by the algorithm and the
value k will determine the granularity of the final clusters. Lower h
values retrieves more recent information and higher k renders more
detailed clusters. In this phase the macro-clusters are determined by

distributed clustering design 43

the use of a modified k-means algorithm. The k-means algorithm uses
the micro-clusters centroids as pseudo-points which are the clustered in
higher level clusters. The initialization of the k-means is modified to
sample seeds with probability proportional to the amount of points
in the micro-cluster. The new seed for a macro-cluster is defined as a
weighted centroid for that partition.

5.2 SAMOA Clustering Algorithm

In SAMOA a distributed version of CluStream was implemented using
the SAMOA API. The general design of the clustering data flow was
divided in three major components represented by the following pro-
cessing items: data distribution (DistributrionPI), local clustering (Lo-
calClusteringPI) and global clustering (GlobalClusteringPI). In addition
to the clustering components a separate module for evaluation was cre-
ated with a sampling processing item (SamplingPI) and an evaluation
processing item (EvaluatorPI). The evaluation components are used to
asses the clustering algorithms by using pre-defined measures, as will
be explained in Section 5.3. These components are illustrated in Figure
5.2. This design allows pluggable clustering algorithms to be used in
both the local clustering phase and the global clustering phase, where
the global clustering uses the output of the local clustering. The defi-
nition of each processing item is as follows:

• DistributionPI: this processing item can either generate a source stream
or receive an external stream to distribute between the LocalCluster-
ingPI instances. The distribution will depend in the connection type
defined in Section ??.

• LocalClusteringPI: this processing item applies the desired clustering
algorithm to the arriving stream and outputs the results as events
in the stream connecting the GlobalClusteringPI.

• GlobalClusteringPI: the global clustering is responsible to aggregate
the events from the local clustering and generate a final global clus-
tering, which can be outputted to the EvaluatorPI for evaluation or
to any output (file, console or other applications).

• SamplingPI: the sampling processing item is part of the evaluation
module and will only be activated when the evaluation mode is
active. It is responsible for sampling the source stream by a chosen
threshold from 0 to 1, where 1 forward all the incoming events to
the evaluation processing item. Another feature of the SamplingPI is
that it also generates the ground truth clustering and ground truth
evaluation measures to be used as external evaluations. This is only
possible when the ground truth is available in the source stream.

44 samoa developer’s guide

Figure 5.1: SAMOA Clustering Task
topology.

• EvaluatorPI: the evaluator processing item can apply any desired
measures to the clustering result. The measures adopted for SAMOA
Clustering are of intra cluster cohesion and inter cluster separation,
which are detailed in the next section.

5.3 Evaluation Criteria

Assessing and evaluating clustering algorithms can be a very challeng-
ing task. Jain and Dubes mention in 1988 that "the validating of clus-
tering is the most difficult and frustrating part of a cluster analysis"
4. This statement reflects what Estvill-Castro said about the clustering 4 Anil K. Jain and Richard C. Dubes. Al-

gorithms for clustering data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988

having different interpretations depending on the perspective. Clus-
tering can be evaluated in two main categories: external and internal
evaluation. The main difference between them is that external valida-
tion takes into account the matching against some external structure,
whereas the internal only uses its internal attributes for validation.
An external structure can be represented by the ground truth, present
on synthetic data but not often found on real data. In the literature
there are many different measures to validate clustering and a review
of some external measures can be found in 5. For the purpose of this 5 Junjie Wu, Hui Xiong, and Jian Chen.

Adapting the right measures for k-
means clustering. In Proceedings of the
15th ACM SIGKDD international confer-
ence on Knowledge discovery and data min-
ing, pages 877–886, 2009

project the measures chosen was that of cohesion and separation that can
both be used as internal and external evaluations by following some
conditions. The following items describe in details the measures:

• Cohesion is the measure of how closely related are the items in a
cluster. It is measured by the sum of square error (SSE) between
each point x in a cluster C and the cluster mean mi.

SSE = ∑
i

∑
x∈Ci

(x−mi)
2 (5.4)

• Separation measures how distant the clusters are from each other.
This is achieved by calculating the between-cluster sum of squares
(BSS), taking into account the overall clustering mean m. This mea-
sure is also directly related to the weight (amount of points) in a
cluster Ci.

BSS = ∑
i
|Ci|(m−mi)

2 (5.5)

distributed clustering design 45

Highly cohesive clusters might be considered better than less cohe-
sive. With these measures some actions can be taken, such as splitting
less cohesive clusters and merging not so separate ones. An interesting
property of these measures is that they are complementary and their
sum renders a constant. Therefore the measures for a clustering with
k = 1 will give a value of BSS equal to zero, therefore the value of SSE
will be the constant. Taking this into account the measures are good
candidates for evaluating the SAMOA distributed clustering design.
Since the cohesion can only be measured if all the points available, it
can only be assessed when the evaluation components are active. On
the global phase of the clustering the separation factor (BSS) can be
found because the final clustering are weighted clusters. Further on
the cohesion (SSE) can be inferred by calculating the difference be-
tween the constant and BSS. When the ground truth is available it is
possible to find the value of SSE and BSS by using the real clustering
centroids. More on the evaluation method will be discussed in the
next chapter.

6
Bibliography

[1] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu.
A framework for clustering evolving data streams. In Proceedings
of the 29th international conference on Very large data bases - Volume
29, VLDB ’03, pages 81–92. VLDB Endowment, 2003.

[2] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen,
Richard King, Yoonho Park, and Chitra Venkatramani. Spc: A
distributed, scalable platform for data mining. In In Proceedings
of the Workshop on Data Mining Standards, Services and Platforms,
DM-SSP, 2006.

[3] Pedro Domingos and Geoff Hulten. Mining High-Speed Data
Streams. In Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’00, pages
71–80, New York, NY, USA, 2000. ACM.

[4] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin
Reed. Zookeeper: wait-free coordination for internet-scale sys-
tems. In Proceedings of the 2010 USENIX conference on USENIX an-
nual technical conference, USENIXATC’10, pages 11–11, Berkeley,
CA, USA, 2010. USENIX Association.

[5] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[6] Tim Kraska, Ameet Talwalkar, John Duchi, Rean Griffith,
Michael J. Franklin, and Michael Jordan. MLBase: A Distributed
Machine-Learning System. In In Conference on Innovative Data Sys-
tems Research, 2013.

[7] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
stream computing platform. In Data Mining Workshops (ICDMW),
2010 IEEE International Conference on, pages 170–177, 2010.

48 samoa developer’s guide

[8] John Ross Quinlan. Decision Trees as Probabilistic Classifiers. In
Proceedings of the Fourth International Workshop on Machine Learn-
ing, pages 31–37, 1987.

[9] John Ross Quinlan. Unknown Attribute Values in Induction. In
Proceedings of the sixth international workshop on Machine learning,
pages 164–168, 1989.

[10] John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[11] Ian H Witten and Eibe Frank. Data Mining: Practical machine learn-
ing tools and techniques. Morgan Kaufmann, 2005.

[12] Junjie Wu, Hui Xiong, and Jian Chen. Adapting the right mea-
sures for k-means clustering. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 877–886, 2009.

[13] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: An
efficient data clustering method for very large databases, 1996.

	Introduction
	Big Data V's
	Big Data Machine Learning Frameworks
	SAMOA

	Scalable Advanced Massive Online Analysis
	High Level Architecture
	SAMOA Modular Components
	SPE-adapter Layer
	Storm Integration to SAMOA
	Apache S4 Integration to SAMOA
	Example

	Decision Tree Induction
	Basic Algorithm
	Additional Techniques in Decision Tree Induction
	Very Fast Decision Tree (VFDT) Induction

	Distributed Streaming Decision Tree Induction
	Parallelism Type
	Proposed Algorithm

	Distributed Clustering Design
	CluStream Algorithm
	SAMOA Clustering Algorithm
	Evaluation Criteria

	Bibliography

