// // Mono.Math.Prime.PrimalityTests.cs - Test for primality // // Authors: // Ben Maurer // // Copyright (c) 2003 Ben Maurer. All rights reserved // // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // using System; namespace Mono.Math.Prime { #if INSIDE_CORLIB internal #else public #endif delegate bool PrimalityTest (BigInteger bi, ConfidenceFactor confidence); #if INSIDE_CORLIB internal #else public #endif sealed class PrimalityTests { private PrimalityTests () { } #region SPP Test private static int GetSPPRounds (BigInteger bi, ConfidenceFactor confidence) { int bc = bi.BitCount(); int Rounds; // Data from HAC, 4.49 if (bc <= 100 ) Rounds = 27; else if (bc <= 150 ) Rounds = 18; else if (bc <= 200 ) Rounds = 15; else if (bc <= 250 ) Rounds = 12; else if (bc <= 300 ) Rounds = 9; else if (bc <= 350 ) Rounds = 8; else if (bc <= 400 ) Rounds = 7; else if (bc <= 500 ) Rounds = 6; else if (bc <= 600 ) Rounds = 5; else if (bc <= 800 ) Rounds = 4; else if (bc <= 1250) Rounds = 3; else Rounds = 2; switch (confidence) { case ConfidenceFactor.ExtraLow: Rounds >>= 2; return Rounds != 0 ? Rounds : 1; case ConfidenceFactor.Low: Rounds >>= 1; return Rounds != 0 ? Rounds : 1; case ConfidenceFactor.Medium: return Rounds; case ConfidenceFactor.High: return Rounds << 1; case ConfidenceFactor.ExtraHigh: return Rounds << 2; case ConfidenceFactor.Provable: throw new Exception ("The Rabin-Miller test can not be executed in a way such that its results are provable"); default: throw new ArgumentOutOfRangeException ("confidence"); } } /// /// Probabilistic prime test based on Rabin-Miller's test /// /// /// /// The number to test. /// /// /// /// /// The number of chosen bases. The test has at least a /// 1/4^confidence chance of falsely returning True. /// /// /// /// /// True if "this" is a strong pseudoprime to randomly chosen bases. /// /// /// False if "this" is definitely NOT prime. /// /// public static bool RabinMillerTest (BigInteger bi, ConfidenceFactor confidence) { int Rounds = GetSPPRounds (bi, confidence); // calculate values of s and t BigInteger p_sub1 = bi - 1; int s = p_sub1.LowestSetBit (); BigInteger t = p_sub1 >> s; int bits = bi.BitCount (); BigInteger a = null; BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi); // Applying optimization from HAC section 4.50 (base == 2) // not a really random base but an interesting (and speedy) one BigInteger b = mr.Pow (2, t); if (b != 1) { bool result = false; for (int j=0; j < s; j++) { if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 result = true; break; } b = (b * b) % bi; } if (!result) return false; } // still here ? start at round 1 (round 0 was a == 2) for (int round = 1; round < Rounds; round++) { while (true) { // generate a < n a = BigInteger.GenerateRandom (bits); // make sure "a" is not 0 (and not 2 as we have already tested that) if (a > 2 && a < bi) break; } if (a.GCD (bi) != 1) return false; b = mr.Pow (a, t); if (b == 1) continue; // a^t mod p = 1 bool result = false; for (int j = 0; j < s; j++) { if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 result = true; break; } b = (b * b) % bi; } if (!result) return false; } return true; } public static bool SmallPrimeSppTest (BigInteger bi, ConfidenceFactor confidence) { int Rounds = GetSPPRounds (bi, confidence); // calculate values of s and t BigInteger p_sub1 = bi - 1; int s = p_sub1.LowestSetBit (); BigInteger t = p_sub1 >> s; BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi); for (int round = 0; round < Rounds; round++) { BigInteger b = mr.Pow (BigInteger.smallPrimes [round], t); if (b == 1) continue; // a^t mod p = 1 bool result = false; for (int j = 0; j < s; j++) { if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 result = true; break; } b = (b * b) % bi; } if (result == false) return false; } return true; } #endregion // TODO: Implement the Lucus test // TODO: Implement other new primality tests // TODO: Implement primality proving } }