//
// Mono.Math.Prime.PrimalityTests.cs - Test for primality
//
// Authors:
// Ben Maurer
//
// Copyright (c) 2003 Ben Maurer. All rights reserved
//
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
using System;
namespace Mono.Math.Prime {
#if INSIDE_CORLIB
internal
#else
public
#endif
delegate bool PrimalityTest (BigInteger bi, ConfidenceFactor confidence);
#if INSIDE_CORLIB
internal
#else
public
#endif
sealed class PrimalityTests {
private PrimalityTests ()
{
}
#region SPP Test
private static int GetSPPRounds (BigInteger bi, ConfidenceFactor confidence)
{
int bc = bi.BitCount();
int Rounds;
// Data from HAC, 4.49
if (bc <= 100 ) Rounds = 27;
else if (bc <= 150 ) Rounds = 18;
else if (bc <= 200 ) Rounds = 15;
else if (bc <= 250 ) Rounds = 12;
else if (bc <= 300 ) Rounds = 9;
else if (bc <= 350 ) Rounds = 8;
else if (bc <= 400 ) Rounds = 7;
else if (bc <= 500 ) Rounds = 6;
else if (bc <= 600 ) Rounds = 5;
else if (bc <= 800 ) Rounds = 4;
else if (bc <= 1250) Rounds = 3;
else Rounds = 2;
switch (confidence) {
case ConfidenceFactor.ExtraLow:
Rounds >>= 2;
return Rounds != 0 ? Rounds : 1;
case ConfidenceFactor.Low:
Rounds >>= 1;
return Rounds != 0 ? Rounds : 1;
case ConfidenceFactor.Medium:
return Rounds;
case ConfidenceFactor.High:
return Rounds << 1;
case ConfidenceFactor.ExtraHigh:
return Rounds << 2;
case ConfidenceFactor.Provable:
throw new Exception ("The Rabin-Miller test can not be executed in a way such that its results are provable");
default:
throw new ArgumentOutOfRangeException ("confidence");
}
}
///
/// Probabilistic prime test based on Rabin-Miller's test
///
///
///
/// The number to test.
///
///
///
///
/// The number of chosen bases. The test has at least a
/// 1/4^confidence chance of falsely returning True.
///
///
///
///
/// True if "this" is a strong pseudoprime to randomly chosen bases.
///
///
/// False if "this" is definitely NOT prime.
///
///
public static bool RabinMillerTest (BigInteger bi, ConfidenceFactor confidence)
{
int Rounds = GetSPPRounds (bi, confidence);
// calculate values of s and t
BigInteger p_sub1 = bi - 1;
int s = p_sub1.LowestSetBit ();
BigInteger t = p_sub1 >> s;
int bits = bi.BitCount ();
BigInteger a = null;
BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi);
// Applying optimization from HAC section 4.50 (base == 2)
// not a really random base but an interesting (and speedy) one
BigInteger b = mr.Pow (2, t);
if (b != 1) {
bool result = false;
for (int j=0; j < s; j++) {
if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
result = true;
break;
}
b = (b * b) % bi;
}
if (!result)
return false;
}
// still here ? start at round 1 (round 0 was a == 2)
for (int round = 1; round < Rounds; round++) {
while (true) { // generate a < n
a = BigInteger.GenerateRandom (bits);
// make sure "a" is not 0 (and not 2 as we have already tested that)
if (a > 2 && a < bi)
break;
}
if (a.GCD (bi) != 1)
return false;
b = mr.Pow (a, t);
if (b == 1)
continue; // a^t mod p = 1
bool result = false;
for (int j = 0; j < s; j++) {
if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
result = true;
break;
}
b = (b * b) % bi;
}
if (!result)
return false;
}
return true;
}
public static bool SmallPrimeSppTest (BigInteger bi, ConfidenceFactor confidence)
{
int Rounds = GetSPPRounds (bi, confidence);
// calculate values of s and t
BigInteger p_sub1 = bi - 1;
int s = p_sub1.LowestSetBit ();
BigInteger t = p_sub1 >> s;
BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi);
for (int round = 0; round < Rounds; round++) {
BigInteger b = mr.Pow (BigInteger.smallPrimes [round], t);
if (b == 1) continue; // a^t mod p = 1
bool result = false;
for (int j = 0; j < s; j++) {
if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
result = true;
break;
}
b = (b * b) % bi;
}
if (result == false)
return false;
}
return true;
}
#endregion
// TODO: Implement the Lucus test
// TODO: Implement other new primality tests
// TODO: Implement primality proving
}
}