// // Mono.Math.Prime.Generator.SequentialSearchPrimeGeneratorBase.cs - Prime Generator // // Authors: // Ben Maurer // // Copyright (c) 2003 Ben Maurer. All rights reserved // Copyright (C) 2004 Novell, Inc (http://www.novell.com) // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // namespace Mono.Math.Prime.Generator { #if INSIDE_CORLIB internal #else public #endif class SequentialSearchPrimeGeneratorBase : PrimeGeneratorBase { protected virtual BigInteger GenerateSearchBase (int bits, object context) { BigInteger ret = BigInteger.GenerateRandom (bits); ret.SetBit (0); return ret; } public override BigInteger GenerateNewPrime (int bits) { return GenerateNewPrime (bits, null); } public virtual BigInteger GenerateNewPrime (int bits, object context) { // // STEP 1. Find a place to do a sequential search // BigInteger curVal = GenerateSearchBase (bits, context); const uint primeProd1 = 3u* 5u * 7u * 11u * 13u * 17u * 19u * 23u * 29u; uint pMod1 = curVal % primeProd1; int DivisionBound = TrialDivisionBounds; uint[] SmallPrimes = BigInteger.smallPrimes; // // STEP 2. Search for primes // while (true) { // // STEP 2.1 Sieve out numbers divisible by the first 9 primes // if (pMod1 % 3 == 0) goto biNotPrime; if (pMod1 % 5 == 0) goto biNotPrime; if (pMod1 % 7 == 0) goto biNotPrime; if (pMod1 % 11 == 0) goto biNotPrime; if (pMod1 % 13 == 0) goto biNotPrime; if (pMod1 % 17 == 0) goto biNotPrime; if (pMod1 % 19 == 0) goto biNotPrime; if (pMod1 % 23 == 0) goto biNotPrime; if (pMod1 % 29 == 0) goto biNotPrime; // // STEP 2.2 Sieve out all numbers divisible by the primes <= DivisionBound // for (int p = 10; p < SmallPrimes.Length && SmallPrimes [p] <= DivisionBound; p++) { if (curVal % SmallPrimes [p] == 0) goto biNotPrime; } // // STEP 2.3 Is the potential prime acceptable? // if (!IsPrimeAcceptable (curVal, context)) goto biNotPrime; // // STEP 2.4 Filter out all primes that pass this step with a primality test // if (PrimalityTest (curVal, Confidence)) return curVal; // // STEP 2.4 // biNotPrime: pMod1 += 2; if (pMod1 >= primeProd1) pMod1 -= primeProd1; curVal.Incr2 (); } } protected virtual bool IsPrimeAcceptable (BigInteger bi, object context) { return true; } } }