
Testing of Java Packages

This Project aims at rewriting java libraries by using a designing method: “Clean
Room”. For this purpose, three groups have been formed, one for each package to be
rewritten: Crypto, Math, RMI, and the Testing group.

As part of an industrial process, the testing phase adds value to the product that is being
handled: every programmer makes mistakes, leaving flaws in the programs that are only
discovered by making the program’s execution fail. The testing phase consists of
discovering those mistakes by identifying the execution faults and, thus, detecting flaws
in the program. The removal of these flaws adds value to the product. The specific aim
of the tests is to find as much mistakes as possible.

Eclipse 3.1 and a CVS server have been established as the working tools, plus one
repository for each group. A small alteration on the extreme programming methodology
was made and a framework for testing JUnit has been used for Unit tests. Each group
was in charge of the private classes, while the public interfaces are tested by the Testing
group.

The testing group initiated its activity estimating the time availability, choosing the
tools and dividing work based on the public classes of the API.

Given the infrastructure of this project, there is one Pentium IV PC available per
member, each PC having two operating systems installed. A good balance has been
reached between the operating systems, since two of the members work with Windows
XP and two others work with Mandriva Linux.

Policies to be taken into account in Testing

• To test is to use a program in order to find flaws in it. A program should never

be used to show that it works, that is not the objective.
• The testing phase should not be made after the creation of a program, but

parallelly or even previously in some cases, first the testing and then the
programming.

• A test has been successful if it finds a flaw. It is key and very normal to find

flaws in the programs, not to find a perfect execution of the program.
• In order not to be “comprehensive with the flaws” the tests must be designed and

passed by someone different form the one that created the code.

• It is not necessary to wait until the whole code has been written to start passing

the tests. They must be passed as the code is being written so that the mistakes
are discovered as soon as possible and thus avoid that they spread to other units.
Actually, the name “testing phase” is not so accurate, because there are plenty of
activities that are developed during this “phase”, and there is no need to finish
one phase in order to start another.

• The tests can find flaws, but never prove that there are no flaws.

• The test should be as much precise as possible, i.e., every time it is realized it

must be able to be executed and be repeated the same way. Special attention
must be paid to the parameter generator.

• Unit tests must be grouped according to their common initialization.

• Unit tests fail when the method that is being tested gives an unexpected result or

an unexpected exception.
• Unit tests do not end correctly when the method that is being tested is not

responsible for the flaw.
• Unit tests end correctly when the method that is being tested responds as it was

expected.
• If the initialization is optimized with static variables that are initiated only once,

it must be made certain that they are not altered in the unit tests.

Organization of the Testing Phases

• UNIT

o BLACK BOX

o WHITE BOX

• INTEGRATION

• PERFORMANCE

• CODIFICATION STYLE

o Identifiers denomination
o Code documentation

Units test

When the unit seems presentable (or there is one, as in our case, we have Sun's version
of the JDK), we enter in what is called a systematic testing phase. On this stage faults

are searched following some criteria so that nothing remains untested. The most
common criteria are the Black Box and the White Box.

We refer to a black box test when it lacks the code details and it limits itself to what it
observes form the outside. It aims at discovering cases and situations in which the unit
does not do what is expected.

Contrary to what the black box test does, the white box test analyzes closely the code
that has been written and it tries to make it fail. Perhaps the most appropriate way to call
these tests is “transparent box tests”.

The Junit Framework has been adopted to perform these tests. For these reason we will
create a class which inherits form TestCase for each class to test. They will follow the
nomenclature, starting with the prefix “Test”, followed by the class name to be tested
(for instance, TestCipher). Besides, the testing methods must start with “test”, followed
by the name of the method that is being tested, the types of arguments that each method
receives and finally a number. They will be invoked by the runner of JUnit that we use.
A number of conditions about its return will be verified, as well as any exit that said
method may generate. This is done through the use of asserts. (the assert methods are
inherited by the class TestCase from the class Assert, and they are in charge of verifying
if certain condition is fulfilled. In case we need other assert methods that are not
implemented for the evaluation of specific conditions, we will implement them in our
utility class)

In order to simplify the manual running of the test batteries, TestSuite is used. This will
allow us to realize at once, all the test methods of one of these classes, which will be
done as follows:

TestSuite testSuite = new TestSuite(TestCipher.class)

However, it should be noticed that when we call the class builder this way, we are
including all the testing methods (those that take the prefix “test”) of our test class in the
test batteries as follows:

Junittextui.testRunner.run (testSuite)

Furthermore we can realize our test classes as follows:

TestResult testResult = new TestResult()

testSuite().run (testResult)

Black Box

White box tests are also known as: opaque box tests, functional tests, entrance/exit tests,
data induced tests.

Black box tests center on what is expected of a module, i.e., they try to find cases in
which the module does not comply with its specification, that is why they are called
functional tests. The tester only supplies the data as entrance and studies the exit,
without being concerned about what the module might be doing on the inside.

Black box tests are based on the specification of the module’s requirements. In fact, the
phrase “specification coverage” is used to give a measure of the number of requirements
that have been tested. It is easy to obtain 100% of coverage on internal modules, but it
can be harder with modules that have an external interface. In any case, it is highly
recommended to get high coverage on this line.

The problem with black box tests does not usually lie on the number of functions
provided by the module (which is always a very limited number, on reasonable designs)
but the data that are passed to these functions. The group of possible data can be wide.
(For instance, it can be an integer).

Several scripts have been realized, initially on Perl, to generate massive test codes. This
was quite beneficial, since a large number of tests were realized in a very short amount
of time and with very little difficulty. After that, said scripts were realized directly in
Java, which allowed us to generate the code with the expected results.

Since the projects are developed with the designing method “Clean Room”, we have at
our disposal a binary of a different implementation to calculate the expected results on
the Unit cases.

This working methodology permits us to write unit tests quickly. As a consequence, the
ranges searched were not a priority to us. The test cases were those that are “frontier” or
just interesting.

To achieve a good coverage with black box tests is a desirable aim, but certainly not
enough. A program might pass widely thousands of tests and have nevertheless internal
flaws that will arise on the most unfortunate moment.

Black box tests show us that a program will do what it has to do, but not that it will do
(in addition) other less acceptable things.

White box

White box tests are also known as: structural tests, transparent box tests.

With these tests we are always observing the code, which the tests execute in order to
“try
it all”. This idea of total test formalizes in what is called “coverage” and it is nothing but
a percentage measure of the amount of code we have covered.

To achieve a good coverage with white box tests is a desirable aim, but certainly not
enough. A program might be perfect and nevertheless not be good for the function that
is being required.

Once the development of every class was finished, the code was analyzed and the
necessary tests were generated complementing the black box tests.
White box tests show us that a program does what it does but not that it will do what we
need.

Integration Tests

Integration tests are generally carried out during the construction of the system, they
involve an increasing number of modules and they end up testing the system as a whole.
However, we will treat these tests as acceptance tests, since the package will be tested
from the user’s point of view, generating in this way some application that uses as much
functions as possible.

Performance test

We may typically be concerned about the response time or how much time it takes for a
system to process so much information, or how much memory it consumes, or how
much disk space it uses, or how many data it transfers by a communications channel,
or…. In this context, it is usually useful to know how they evolve when the dimension
of the problem is modified (for instance, when the volume of the entrance data is
doubled).
However, here we will concentrate on the execution time of every method, in order to
compare our implementation with that of Sun's.

Codification styles

In relation to any human activity it can be stated that there is style when: the level of
similarity of certain attitudes, expositions and actions of a person, or a group of people,

is such that it is possible to identify this similarity and deduce general behavioral
schemes.

• Every programmer ends up developing their own codification style.

• The homogenization of the different styles of the programmers of the group

facilitates the programming work.
• In our case, we control that the codification specifications of SUN's are fulfilled.

