
RMI Testing Ideas

In order to test RMI we consider the following items:

- Registry

- Socket Factories

- HTTP Tunneling

- Transfer of Remote Objects as parameters

- Distributed Garbage Collection (DGC)

- Class Loader

- Stress tests

- Performance tests

REGISTRY

For implementing the tests on this item we know:

Two registries cannot be exported in the same VM. The Security Manager checks if the

current client has privileges to modify the contents of the Registry. All non-local clients

should be rejected.

Tests cases proposed:

• Try to export a second Registry in the same VM.

• Try to access from a non-local host.

• Bind a stub in the Registry and bind another stub with the same key name. Also

rebind and unbind stubs from a server and lookup these stubs from a client.

SOCKET FACTORIES

The socket factory to be used by an exported object is bounded at exportation time on

the server. In order for the client to connect to the server, it must use the correct socket

type. When the client deserializes the stub, the stub has a reference to an instance of an

implementation of RMIClientSocketFactory. When the stub is bound into a naming

service, serialization process creates a copy of the correct socket factory. When the

client gets the stub from the naming service, it also obtains a copy of the socket factory,

and can therefore connect to the server.

Test cases proposed:

• Create different types of Sockets at server side and client side and then test the

connection. In all cases, we can test several configurations: set the socket at

server side, set the socket at client side, set different sockets and verify that they

fail.

HTTP TUNNELING

RMISocketFactory contain a method that creates sockets that transparently provide a

firewall tunneling mechanism. The client socket first attempt a direct socket connection.

If cannot be contacted with a direct connection, automatically attempts HTTP

connection to the server. Server sockets automatically detect if a newly-accepted

connection is an HTTP POST request. If that fails, it attempts to send the request to a

URL beginning with /cgi-bin/java-rmi.cgi. The interpretation of this URL is that the

request will be forwarded to a program which interprets the HTTP request and forwards

it, as an HTTP request, to the appropriate port on the server machine.

Test cases proposed:

• Construct different scenarios:

- A host without a firewall that accepts direct-connections.

- A host with a firewall installed without a CGI script.

- A host with a firewall installed with a CGI script.

And then change the firewall configuration to test different scenarios.

TRANSFER OF REMOTE OBJECTS AS PARAMETERS

DISTRIBUTED GARBAGE COLLECTION (DGC)

CLASS LOADER

For implementing the tests on these items we consider:

(1) Create different types of remote objects based on the concept of Factory Pattern.

(2) Connects a series of hosts (for client/server purposes) and execute the tests on them.

In order to implement that, we based the case on the thesis of Andrei A. Dancus 1
:

Test case:

In a host x we have an object A and a stub on x
i
 accessible from x

i
’s locally, a

remote call is sent by x
i
 to x

i+1
 and creates the copy of A, then the strong

reference to A on a host x
i
 is destroyed. The remote call is received by x

i+1
 and a

stub is created therefore a dirty call is sent to x. Meanwhile, on host x
i
 A is

identified as garbage and a clean message is sent to x. This behavior can

propagate for all n-hosts.

We can also test the Class Loader changing the interfaces versions and passing object

references that have another implementation. These interfaces can be used through

reflection.

STRESS TESTS

PERFORMANCE TESTS

For implementing the stress tests and performance tests, plan to use the tests cases

exposed before and overload them. We can add more hosts and execute different

methods. We can export and unexport different objects. Finally, all results will be

registered and compared with those obtained against Sun´s RMI package.

1 GARBAGE COLLECTION FOR JAVA DISTRIBUTED OBJECTS. Andrei A. Dancus.

(http://www.wpi.edu/Pubs/ETD/Available/etd-0502101-140442/unrestricted/dancus.pdf)

Testing structure

In order to test RMI we needed a real net. For implementing this we propose this test

scenario.

ClientExecutor

+execute(entrada ser : ServerExecutor, entrada times : int , entrada object... parameters) : object

«interfaz»

ClientExecutor

+execute(entrada object... parameter) : object

«interfaz»
ServerExecutor

These are clients that execute a service several times. The service is a remote object.

This object can be exported and executed through a stub. Otherwise if the object is not

exported, it is executed directly in the client host. In this scenario all hosts are equals,

but the RMISocketFactory configuration can be changed to do tests.

StartUp Report IP Server

Because they are many and different clients, an additional service was implemented.

This service allows to centralize the clients IP's. Thus the client reports his IP to the

server and it is possible to ask to the server for reported clients. This server can store an

IP address with the information of each client.

However, the clients not execute any activity. For this we construct a Server. It has a

progress interface, thus the clients only can be consulted for visible problems.

The clients have a simple code and they need remote access to the server code. For this

we use a FTP service and store the access in the correspondent property

(java.rmi.server.codebase)

Testing methodology

In a first stage, we made tests on Registry, Remote Objects as parameters and

Distributed Garbage Collection (DGC) following the testing ideas presented above. The

tests on Socket Factories, HTTP Tunneling and Class Loader, will be made in next

stages.

Note: The implemented scenarios can be used for implementing the remaining test cases

and others that be defined later.

In order to testing Registry we have two hosts, a host (called localhost) and a host

(called non-localhost).

RemoteRegistryTestCase

public void testBind001() throws RemoteException, AlreadyBoundException

Tries to bind a remote object in a Registry of a non-local host (non-local Registry).

This operation throws an exception.

public void testLookup001() throws AccessException, RemoteException,

NotBoundException

This test verifies that all elements in a non-local Registry are functional.

public void testLookup002() throws RemoteException, MalformedURLException,

NotBoundException

This test tries lookup a non-bounded remote object. This operation throws an

exception.

public void testLookup003()

This test tries lookup a remote object with a non-existing name. This operation

throws an exception

localhost non-localhost

local Registry non-local Registry

public void testRebind001() throws RemoteException, MalformedURLException,

NotBoundException

This test tries to re-bind a remote object with a same name in a Registry. This

operation throws an exception.

public void testUnbind() throws AccessException, RemoteException,

NotBoundException

This test tries to un-bind remote objects from a non-local Registry. This operation

throws an exception.

public void testAutoBindAndExportionUsingRemoteRegistry() throws

RemoteException

This case makes a test on a non-exported object. If this object is deserialized, it is

exported and bounded. This object is sent as parameter to a non-local Registry. The

binding fails. However the object will be bounded because will be deserialized.

One more Registry can be exported in the same VM in the Sun’s implementation.

However one more Registry cannot be exported in the same VM in this implementation

for accomplishment of the design.

-

In order to test Remote Objects as parameters, exportation, unexportation and remote

references we create an scenario who have several hosts

PortableTestCase

public void testPortar() throws RemoteException, NotBoundException

An object is exported to an external host and it is used through his reference. Then,

the object is unexported and we can verify that cannot use the reference.

public void testExportingAndComparing() throws RemoteException

The objects are exported in different hosts (one object per each host). In each

exportation the destiny is verified.

PropagableTestCase

public void testPropagableOneHost001()

ClientExecutor

ClientExecutor ClientExecutor

ClientExecutor

Stub

Stub

Object

Stub

Simply executes an object on a host. This procedure is repeated on all hosts.

public void testPropagableOneHost002()

ClientExecutor

ClientExecutor ClientExecutor

ClientExecutor

Stub

Stub

Object

Stub

Executes an object on a unitary list of remote hosts. This procedure is repeated on all

reported hosts.

public void testPropagableAtOnes001() throws SecurityException,

NoSuchMethodException, IllegalArgumentException, IllegalAccessException,

InvocationTargetException

ClientExecutor

ClientExecutor ClientExecutor

ClientExecutor

Stub

Stub

Object

Stub

Simply executes an object on a list of remote hosts.

-

In order to test Distributed Garbage Collection (DGC) we build an scenario with

several hosts

DGCTestCase

public void testMovingReference001() throws RemoteException, NotBoundException

StartUp

Object

ClientExecutor

ClientExecutor

ClientExecutor

ClientExecutor

Stub

Stub

Garbage

Stub

This test copies -through all servers- the reference (stub) of an exported remote

object. The life time of these objects is limited, they work and then they are deleted.

All local –strong- references to the object are deleted and we expect that the DGC

collect the remote object.

public void testMovingReference002() throws RemoteException, NotBoundException

Exports a non exported object that has a reference to an exported object in an

external host. If all local strong references are deleted and only the exported object in

the external host has a reference to the local object, then the local object is not

collected.

public void testCiclicReference001() throws RemoteException, NotBoundException

Object

ClientExecutor

Object

Object

Stub

Stub

Object

Stub

Makes a cyclic reference using the stub of the remote object. The specified objects

are in the same host. The DGC will detect the cyclic reference and collect them.

public void testCiclicReference002() throws RemoteException, NotBoundException

ClientExecutor

Object

ClientExecutor
ClientExecutor

Stub

Object

Object

Stub

Stub

Makes a cyclic reference to the remote objects that they are in different hosts. The

DGC not will detect the cyclic reference and not collect them.

Testing Report

The Testing Report is obtained through the standard exit.

See an example of a Testing Report:

ReportIPServer Start....

class ar.org.fitc.test.rmi.integration.fase2.test.ReportIPTestCase start

testMyHostName001

testGetIt001

testReport001

class ar.org.fitc.test.rmi.integration.fase2.test.RemoteRegistryTestCase start

testBind001

testLookup001

testLookup002

testLookup003

testRebind001

testUnbind

testAutoBindAndExportionUsingRemoteRegistry

Failed with: undeclared checked exception; nested exception is:

java.io.EOFException

First the reportIP service is up. The time used for the correct start up and for another

consideration of configuration is reported by dots that shows the progress. Then it runs

the execution of a testing group. The tests executed are showed and some information of

them can be indicated. The failed case is reported, if nothing is reported then the

execution of testing was successful.

Initial Parameters

In order to execute the testing is needed to set a serverhost and codebase in the service-

side and the serverhost in the client-side.

