
Aliases and Search
by Alex Karasulu





LDAPv3 Aliases

LDAP aliases provide alternative distinguished names for entries.  They bypass the
hierarchical structure of the directory by pointing anywhere without constraint.  The
objectClass definition for an alias is provided below along with the attributeType
definition for its sole required attribute aliasedObjectName:

( 2.5.6.1 NAME 'alias' SUP top STRUCTURAL MUST aliasedObjectName )

( 2.5.4.1 NAME 'aliasedObjectName' EQUALITY distinguishedNameMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE )

The aliasedObjectName uses the distinguishedNameSyntax.  Hence an LDAP alias is an
LDAP entry that contains the distinguished name of another LDAP entry on the same
LDAP server.  Dereferencing parameters associated with search requests are used to
optionally dereference aliases on the server before returning results to the client.
According to section 4.5.1 of RFC2251, search requests contain a search operation
modifier, 'derefAliases', which affects the manner in which aliases are handled during the
course of a search operation.  Parts of the RFC's section defining the values of the
derefAliases search parameter are listed in the block below:

            Search Request Indicator ASN.1 Notation Snippet:
            derefAliases ENUMERATED 

{ 

neverDerefAliases (0),

derefInSearching (1),

derefFindingBaseObj (2),

derefAlways (3) 

}

            

            Indicator Commentary Snippet:
derefAliases: An indicator as to how alias objects (as defined in
X.501) are to be handled in searching.  The semantics of the
possible values of this field are:

neverDerefAliases: do not dereference aliases in searching
or in locating the base object of the search ;

derefInSearching: dereference aliases in subordinates of the
base object in searching, but not in locating the base
object of the search ;



derefFindingBaseObj: dereference aliases in locating the
base object of the search, but not when searching
subordinates of the base object ;

derefAlways: dereference aliases both in searching and in
locating the base object of the search.

The definitions for the four modes of alias handling raise questions regarding alias
handling behavior.  These questions deal with the order in which dereferencing and
search selection criteria are applied.  If alias dereferencing is applied before the
application of search criteria then the filter takes affect on the target entry referred to by
the alias.  Conversely if dereferencing is applied after the application of search criteria
then the filter is applied to the alias itself and not on the target entry.  In the later case the
alias may never be a candidate for dereferencing if the search filter does not select it.
Although a subtle nuance in alias handling, the order of handling can produce dramatic
differences in the returned search result set.  These questions must be answered before
choosing a design approach that incorporates the handling of aliases.  

The existing LDAP and DAP standards do not explicitly confront these crucial details.
Perhaps the lack of standardization is the reason why so many directory servers do not
support aliases.  The SUN One Directory Server, formerly known as the iPlanet Directory
Server, does not support aliases.  Although a sticky point, aliases provide an
immeasurable degree of flexibility, and should be supported.  Ultimately we need to pose
these questions to both the LDAP and DAP communities to find the appropriate answers.
For the time being some inferences can be drawn from what little information we do have
regarding alias handling.  These inferences can be presented to the community for
definitive answers after we draw them out.  Unfortunately formal documentation on or
specifications describing the exact behavior of aliases is scant.  There seems to be a
defunct IETF draft that never made it to RFC which discusses the expected behavior of
aliases here.  We do not trust or recommend the content within this draft since it has been
rejected and conflicts with existing RFC's.

There are several questions that need to be answered before we implement aliases.
Finding the answers to these questions and the constraints they impose on the design are
the goals of this document:

1. Does alias dereferencing occur before or after the application of a filter?

2. Does dereferencing follow aliases chains? In other words, when dereferencing
is enabled, does the process continue dereferencing an alias chain until a non-
alias entry is found?

3. How do we handle alias imposed cycles while conducting search? References
to parents and other relatives could impose cycles.  What mechanisms will be
put in place to bound searches preventing infinite loops within alias imposed
cycles?



4. How do we elegantly make JNDI environment parameters and other search
modifying aspects of a JNDI Context available deep within the search engine?

5. When traversing aliases to return entries beyond the expected scope of the
search base, which absolute path should be returned for entry results: the
primary distinguished name or the alternative distinguished name through the
alias?

Our goal is to eventually be able to backend both LDAP and X.500 directories.  To do so
we must also consider X.500 nuances associated with aliases.



X.500 Aliases

According to X.501 aliases are alternative distinguished names for objects provided by
the use of 'alias' entries.  An X.501 alias uses the aliasedEntryName attribute instead of
the aliasedObjectName attribute used in LDAP.  Regardless X.501(02/2001) section 9.8
note 2 states that the aliasedEntryName can be the primary distinguished name or any
other alternative distinguished name.  Hence X.501(02/2001) allows alias chaining,
however it warns that chaining may introduce inconsistencies between the 02/2001
specification and specifications before 1997.  X.501 goes on to define the process of alias
dereferencing which accounts for alias chains and finally explicitly states that aliases can
point to other aliases:

X.501 Section 9.8

The conversion  of an alias  name to an  object name is termed (alias)  dereferencing and comprises
the  systematic replacement of alias names, where found within a purported name, by the value of
the corresponding aliasedEntryName attribute. The process may require the examination of more
than one alias entry.

Any particular entry in the DIT may have zero or more alias names. It therefore follows that
several alias entries may point to the same entry. An alias entry may point to an entry that is not a
leaf entry and may point to another alias entry.

An alias entry shall have no subordinates, so that an alias entry is always a leaf entry.

X.501 also scratches the surface of directory inconsistencies resulting from the deletion of
entries with aliases pointing to them.  “Stale aliases”, as we coin them, can exist while the
directory is in operation.  Administrators are expected to remove or make stale aliases
consistent:

X.501 02/2001 Section 21.3

During the process of modification of entries it is possible that the Directory may become
inconsistent. This will be particularly likely if modification involves aliases or aliased objects
which may be in different DSAs. The inconsistency shall be corrected by specific administrator
action, for example to delete aliases if the corresponding aliased objects have been deleted. The
Directory continues to operate during this period of inconsistency. 

Other security implications with regard to alias handling are discussed however we omit
these sections due to immediate relevance.  Security, namely authorization is handled
outside of backends.  



Reaching Conclusions By Way Of Common Sense 

Above we listed the modes for search alias handling.  If we consider alias handling in
each of these modes using very special search scenarios we can draw some conclusions
regarding the behavior of aliases.

An Alias Entry for the Search Base
A particularly special situation is when the search base is an alias.  The base is
constrained by the DSA to be a leaf node since aliases can only be leaves.  When using
the neverDerefAliases mode the alias entry is handled like any other regular leaf entry.
There are two possible outcomes to the search.  One where the alias entry is returned and
one where nothing is returned.  The scope and filter will determine the result.  If we
presume the filter accepts the alias then the scope will determine the outcome.  The base
and subtree scopes should return a single entry: the alias base.  A one level scope search
never returns the base in the result, so with one level scope, the search returns nothing.  

The derefInSearching mode also will not dereference aliases while finding a base.  For
any alias used for the search base, the derefInSearching mode should behave just like
neverDerefAliases mode.  Presuming the filter accepts the alias entry, the scope of the
search determines whether the alias entry is returned or if nothing at all is returned. If
base or subtree level scope is used, the alias entry will be returned.  If one level scope is
used no entries are returned.  These conclusions are directly a result of following the
definitions for the alias handling modes within RFC 2251.

The derefFindingBaseObj finally begins to introduce alias dereferencing.  Before
investigating the dynamics of this mode some discussion regarding expected alias
semantics are germane.  White pages often have an ou=People and an ou=Groups
container for managing the users and their roles within an organization.  Often an
ou=Admin area is created specifically to manage the accounts of directory administrators.
The probability of the need to point an alias entry within the ou=Admin entry to a person
entry under the ou=People entry is highly likely.  Presume the person entry has the Rdn
uid=akarasulu and the alias referring to it under ou=Admin has the Rdn uid=alex.  If a
search with base scope on the alias entry is attempted using (objectClass=person) then
one would expect to get the entry under ou=People back.  This is common sense and the
basis for alias semantics.  Now if the filter was applied before the dereferencing took
place, the alias entry would not have been selected since it is not an instance of
objectClass person.  Only if applied after the dereferencing phase of search can the filter
return the expected result.

If the situation were reversed and dereferencing occurred after the application of the



search filter, the user would have to know that the entry searched is an alias.  To return
the entry, the following filter would have to be used instead: (objectClass=alias).  The
faults of dereferencing after filter application are becoming apparent.  The entire point to
aliasing is to not have to be cognizant of an object's objectclass as an alias or otherwise.
Directory users should only have to set the alias handing mode to deal with all aliases
within the directory.  Dereferencing aliases before allows a single setting to handle the
gambit of conditions.  The user then only needs to know whether or not the possibility of
encountering an alias exists.  Dereferencing aliases after the application of a filter
requires users to be aware of the exact objectclass of every entry composing the search
filter.  The latter is completely impractical and misses the implied semantics of an alias.
Alias dereferencing must be applied before filter application to preserve the meaning and
expected behavior of an alias.

To be absolutely clear, take the example a step further.  A one level search at the
ou=People base using the (objectClass=person) filter is a natural construct to use when
listing the people within the organization.  If dereferencing occurs after filter application
all aliases would be missed even when the derefAlways mode is in effect.  If
dereferencing occurs before filter application then aliases are dereferenced to their targets
and returned when derefAlways or derefInSearching is enabled.  However when these
modes are not in effect then as expected the aliases are ignored.  Alias dereferencing must
always occur before filter application otherwise there is no point to having aliases in the
first place.  With this clarification we can continue.

When the derefAliases parameter is set to derefFindingBaseObj, dereferencing only
occurs when finding the search base.  If the search scope is set to base scope then the
entry the alias refers to is dereferenced and returned as a candidate for selection by the
search filter.  If the search scope is set to one level or subtree level scope, the search
operates as if the base were replaced with the distinguished name of the entry pointed to
by the alias.  Hence the effective search base when dereferencing is the primary DN of the
aliased entry.  Depending on the structure of the DIT at the point of the entry aliased,
search could return one or more results with sub tree scope and zero or more results with
one level scope.

The remaining derefAlways mode is a composite mode based on the derefInSearching
and the derefFindingBaseObj modes.  It's behavior on search can be inferred by
combining the behaviors of the composing two modes.  The search base would be
replaced with the primary DN of the entry referred to by the alias.  The difference now is
that another alias encountered during the search will have to expand the search if it
increases the search scope.

The simple example helped deduce some very critical aspects of how aliases are to be
handled.  In conclusion, alias dereferencing must occur before the filter is applied upon a
candidate to determine a candidate's eligibility.



Dereferencing In Search and Alias Chaining
Both X.501 and LDAP allow for alias chaining where one alias can refer to another.
According to X.501 the dereferencing of an alias continues until a primary DN is
resolved.   “Primary,” as opposed to alternate DN refers to the DN of a non-alias entry.
The statement conotates an atomicity to alias dereferencing.  Meaning dereferencing does
not stop after the first alias is dereferenced if it points to another aliased entry.  If
dereferencing occurs every alias is dereferenced until a target primary distinguished name
is found at the end of the chain.

Before debating the necessity for alias chains questions regarding cyclic alias chains must
be raised.  If alias chaining is allowed then there is the possibility of having one alias refer
to another second alias which refers back to the first alias.  This is a cycle with two links.
The number of links in the cycle could be arbitrarily large and could throw alias
dereferencing code into an infinite loop if cycle detection does not occur.  Cyclic chaining
is an absolute possibility.  It emerges from the fact that alias inconsistency is an
acceptable state in both X.500 and LDAP.  According to specifications, aliases can be
created arbitrarily without constraint to nonexistant entries that do not yet exist.  The
target of the first alias can later be be added as an aliase referring back to the first alias.
This way dangerous cycles with two links can be created by malicious users to slow the
DSA down to a crawl effectively conducting denial of service attacts.  

Why then would cycles be allowed in the first place?  When dereferencing aliases, the
DSA must dereference completely until it reaches a non-alias target entry.  Why not
dereference aliases to other aliases in advance at the point of addition instead of
introducing extra dereferencing steps during time critical search operations.  Allowing
users to chain aliases becomes moot, if the server bypasses chains on entry addition.  Two
different approaches can be used to remove the wasteful effects of alias chains.

One approach would be to allow for the addition of an alias, however the DSA would
dereference the alias to a primary distinguished name and use that name instead of the
user provided alias DN which causes the chain.  The net affect is another direct alias to a
non-alias entry rather than an alias chain.  However, in this situation the DUA is unaware
of the tampering or that alias dereferencing took place to bypass the chain.  The
tampering really is a form of optimization since the direct alias will perform faster than
one getting to the target indirectly through a chain.  Changes to user provided inputs
without their notification is a dangerous endeavor altogether and we choose to avoid it.

An alternative approach would be to detect chaining, and reject the addition of the
chained alias.  An informative report directing the user to modify the request using a
direct alias instead will alert the user to the problem.  If dereferencing is performed then
as a bonus the alias target can be recommended within the rejection message.



Both X.500 and LDAP allow for alias chaining it seems.  Although seemingly pointless,
X.500 aliases may have at some point had a reason for allowing alias chaining.  Perhaps
the ability of X.500 aliases to traverse servers and later LDAP's adoption of it without
allowing the alias to point beyond a single server, lead to the loss of the need for alias
chaining.  Why this feature was allowed is irrelevant.  Our goal is to enable aliases while
preventing its misuse without detracting from its utility.  Alias chaining will not be
allowed and should not factor into backend designs for implementing aliases.  For all
practical purposes chaining can be ignored while designing the alias handling mechanism
in search.

Cycles within the directory can still result without alias chaining.  With sub tree scoped
searches, encountering an alias referring back to a relative will cycle back down through
the relative.   The loop could be executed several times until time or size limits in the
search are reached if specified at all.  If aliases are not allowed to point to their relatives
the problem goes away.  We choose to reject aliases to parents and other relatives on
addition to avoid unnecessary cycle detection code which consumes space and time
during time critical search operations.

Common Sense Conclusions
We've concluded on constraining aliases in two ways.  First we shall prevent alias
chaining by rejecting chain formation on addition.  Secondly we shall avoid wasteful
search cycles by preventing aliases to parents and other relatives to the alias again on
addition.  These two measures to constrain aliases on addition reduce the complexity of
implementations where alias dereferencing occurs.  Furthermore these constraints reduce
complexity while enabling aliases in a safe and sensible fashion.



Specialized Alias Indices in xldbm

Tim Howes published a paper on the xldbm database for backing X.500 and LDAP
directories1.  Two special indices are used in the recommended database design
specifically for handling alias dereferencing.  Briefly we quote the description of the
dereferencing mechanism and the indices used within the paper.  We will use it for the
basis of our implementation discussions to follow:

The key to handling aliases is to identify those aliases that point outside the scope of the search. If
an alias does not “escape” the scope of the search, the entry it points to will be searched
automatically (because it is contained within the scope, not because an alias points to it - why it
gets searched is immaterial, as long as it does). Once such aliases are identified, the search is
continued with the entries to which they point (either the entry itself for a one-level search, or the
entry and all its descendants for a subtree search). Base object searches are easy to handle by
examining the entry directly, and do not require any special indexing.

To efficiently identify aliases that need searching, two new indexes are maintained, one for one-
level scopes, one for subtree scopes. For each non-leaf entry, the one-level index contains an entry
containing the entry IDs of alias children of the entry that do not point to other children (i.e.,
aliases that escape the onelevel scope). Similarly, the subtree index contains entry IDs of alias
descendants of the entry that do not point to other descendants. During a search, the list of
candidate entries is generated as before, and then the appropriate alias-scope index is consulted to
determine if there are entries outside the scope that should be searched.

1 An X.500 and LDAP Database: Design and Implementation by Timothy A. Howes.  A copy of this
paper is available here.



Implementing An Alias Dereferencing Phase To Search

With slight modifications, we will follow the same techniques used by xldbm to manage
alias dereferencing.  The two specific indices for onelevel and subtree aliases respectively
will be constructed and maintained.  Another third optimizing index will be used to map
the target dn of an alias to the id of alias.  On alias addition index entries are added.  On
alias deletion index entries are removed.  The use of these indices to implement the
search phase for alias dereferencing is discussed below categorized by scope.

Handing Base Scope
Base scoped searches are simple and can be handled directly using point lookups in the
search engine before returning the entry if at all.  The four alias dereferencing modes can
be reduced down to two modes where base dereferencing occurs across all scopes.  Here's
how the four modes reduce down to two modes:

Table I.

Dereference Base Do not Dereference Base
derefFindingBaseObj derefInSearching
derefAlways neverDerefAliases

When an alias is encountered on the search base, the alias is dereferenced only if the
dereferencing mode is derefAlways or derefFindingBaseObj.  If dereferencing is to occur,
the target entry pointed to by the alias is retrieved.  The filter is applied against the entry
and if accepted,  it is returned in an enumeration with a single result.  If the filter rejects
the dereferenced entry then an empty enumeration is returned.  If dereferencing does not
occur, the filter is then applied to the alias entry in the same way it would have been
applied to the target.

Handing Onelevel Scope
Like other scopes the onelevel scoped search must determine the effective search base
first.  To do so it uses the same technique outlined in Table I. to dereference the base.
Once the effective base is known the scope node is built using this new effective base.

If derefAlways and derefInSearching are enabled a special onelevel scope constraint is
assembled for filter evaluation.  This constraint is composed of the disjunction of two
assertions.  The first assertion tests if the candidate is a child of the search base.  The



second assertion tests if the candidate is contained as a value within the onelevel alias
index for the effective base.  If one or the other of these assertions evaluates to true the
candidate is scope accepted and must be evaluated by the rest of the AST for return.

Handling Subtree Scope
The same process to deduce the effective base is applied as summarized in Table I.  The
truly interesting aspects of subtree scoped search appear within the derefInSearching and
derefAlways modes.

Subtree scoped search where dereferencing is to occur while searching must factor in
aliases that extend the search beyond the intended scope of the search.  A special scope
node on the filter AST is assembled using a disjunction to assert whether a candidate is
within this wider alias extended scope.  At the present moment the scope node is added to
the search to constrain candidates on the basis of their being descendants of a single DN.
If more than one DN is used this disjunction, the scope extension via aliases occurs
naturally the search simply appears to progress as if it had multiple bases.  The
disjunction can easily be assembled by performing a lookup on the subtree alias index.
The DN of each id returned is used to build an assertion to check if a candidate is a
descendant of the DN.  All these assertions are added to the disjunction of assertions so
one must evaluate to true for the candidate to be within scope.  The original effective base
assertion is also added to the disjunction.

With the previously described alias addition constraints, search scope usually extends
either laterally and downward beyond the effective search base when alias dereferencing
is enabled in searching.  Finding all the aliases that extend the scope is critical and a bit
more involved.  A single lookup on the subtree alias index returns a subset of the scope
expanding aliases.  What about the new aliases introduced by the expanded scope?  By
following the first set of aliases we may hence encounter more aliases along the way.  We
must account for these aliases but when does the process stop.  The point is the process is
recursive.  The first lookup may return an initial set of aliases.  Out of the initial set the
process must be conducted again recursively until lookups return no more new alias.

Once the entire set of aliases are found an optimization could be performed to determine
overlap.  Overlapping alias DNs can then be removed from the set.  If an alias extends the
scope to ou=people,dc=example,dc=com and another alias extends the scope to
ou=special,ou=people,dc=example,dc=com then there is no reason to add the latter to the
disjunction in the scope node.

Once the optimal scope is determined using the aliased DNs the scope assertion node is
assembled as a disjunction of these nodes and the original effective search base.  The
subtree search with aliases extending the scope reduces to a search on multiple non-
related bases.



JNDI Considerations
With respect to JNDI, alias dereferencing is controled using the following environment
property: "java.naming.ldap.derefAliases".  The dereference links flag obtained via the
getDerefLinkFlag() on SearchControls has nothing to do with alias dereferencing.  This is
clearly stated in the JNDI specification.

When dereferencing aliases, entries are returned out of the specified scope because of
paths through aliases.  When returning the names of entries via the NameClassPair
getName() method returns a name which can be relative or absolute.  There is no mention
of the name being primary.  A primary name is absolute: it is the real distinguished name.
Any absolute distinguished name however need not be a primary name.  An absolute path
can traverse over an alias while dereferencing.  A path through an alias will create an
alternative name for potentially many entries in the set of SearchResults.  The problem of
determining which DN to use for returned entries going through aliases extends beyond
just the JNDI.  The problem is at the level of the protocol.  JNDI just takes a precaution to
parameterize whether or not the returned name is relative or absolute leaving it up to the
provider to set the flag.  The precaution perhaps comes as a consequence of the following
complex problem.

Lets consider a situation where a subtree scoped search is conducted.  Two separate
aliases A and B below the search base point to the same aliased entry C.  Without alias
dereferencing C would never have been in scope and hence never returned.  Both aliases
A and B bring C into scope through separate pathways when dereferencing while
searching is enabled.  How does one determine which alternative path to return?  When
entry C is returned in the search result should we use the alternative distinguished name
through A or through B.  Or should we return C twice using both alternative distinguished
names through A and through B?  Two copies of C would have to be returned as two
separate entries with different alternative distinguished names through both aliases A and
B.  If one were only returned which one would be returned: the path through A or the path
through B?  What algorithm would be used to make the returned distinguished name
consistant across multiple DSAs?  There are two possible behaviors that could be
implemented: primary names could be returned with a single copy of C or alternative
DNs could be returned with multiple copies of C which represents paths through aliases
A and B.  Generalize the the problem beyond just two pathways to N alternative paths to
C and we have a big problem indeed.

When alias dereferencing is enabled and only primary distinguished names are returned
with a single copy of C there is no way to determine how C is arrived at with more than
one alternative path: through alias A or B.  The path information is lost in the
dereferencing.  There is no way for the JNDI provider to return relative names to the
client, it must default to returning absolute primary distinguished names.  This is why
JNDI is designed to report the relative flag of a NameClassPair.  Only when alias



dereferencing while searching is disabled, can the provider compute the difference
between the search base and the primary distinguished name to return a relative path.
This is the only way the provider can be certain aliases have not tampered with the path
between the base and the returned entry.

Let's take a look at the alternative approach.  When multiple copies of C are returned,
each with a different alternative distinguished name through aliases A and B, relative
names can still be calculated when alias dereferencing is enabled.  However the search
must go to great lengths to determine both paths through aliases A and B to make that
happen.  One approach would be to determine if the returned entry is out of search scope
first.  Next all the paths to the entry must be determined through aliases A and B.  The
distinguished name and alias index can be used to compute the alternative relative
distinguished name and determine if the entry was in scope to begin with.  Although not
impossible it takes a great deal more effort to get to this point than to simply return one
copy using the primary distinguished name and setting names to non-relative.

At this point we must ask if search is meant to return a set of unique paths or if it is to
return a set of unique entries that satisfy a filter constraint.  Aliases seem to bring with
them the devil throwing everything into a loop making distinguished names not so
distinguished anymore.  The bottom line is, the words 'unique' and 'distinguished' loose
their meaning somewhat when aliases are enabled.  We're left to semantics.  The best
approach would be either mechanism which can be toggled using a JNDI environment
parameter.

Search presently is geared to return only one copy of an entry.  It goes to some lengths to
prevent duplicate returns.  This is natural if the returned entry also has the same DN.
Search should continue to returns primary distinguished names only.  So whenever
derefInSearching or derefAlways is set the JNDI provider only returns absolute
distinguished names rather than relative names in the derefFindingBaseObj and
neverDerefAliases modes.  For the time being this can be the default operation.  If we
find that the other semantics apply where alternative distinguished names are to be
returned with copies of the entry for each alternative name then we can add a new
provider specific JNDI environment property named: enable.alternative.names.  The
property would probably be prefixed with the package name of the server side provider.
When present and set to anything at all, even null the property should toggle on the use of
alternative distinguished names rather than primary distinguished names.  Then the
provider can return one or more copies of entries using different relative alternative
names from the base to the target.  So when the property is set, the JNDI provider always
returns relative alternative names regardless of the dereferencing mode used.

Another complex question arrises specifically when alternative names are enabled.  How
do you build the alternative name?  The alternative DN could include the name
components up to but not including the Rdn of the alias entry.  The Rdn of the aliased



target object would be used instead to continue the name.  The other way to construct the
alternative name would be to include the name components up to and including the Rdn
of the alias entry.  The name would then exclude the target's Rdn and continue from there.
Both the alias entry's Rdn and the target entry's Rdn could also be used adding an extra
component.  How would you build the relative alternative name when you have these
three options?  Our approach is to leave these questions unanswered until we are told that
alternative names are required.   If we have to return alternative names then we can apply
our mechanism discussed earlier after answering these questions.

Effected Regions
As of this writing, changes to the database implementation for the add, modify, delete,
and move operations would be required to manage one, sub and alias indices.   The add,
delete and modify operations are easily handled.  The move operation is far more
complex because it rearranges the parent child relationships within the directory.  This
makes the one and sub index entries inconsistent requiring their recalculation.  Although
move operations are not supported in LDAP they are supported in the database for
administrative purposes.

A new system index on the ALIAS_ATTRIBUTE (aliasedObjectName or
aliasedEntryName) is added to forward and reverse map normalized alias target DNs to
the entry containing the target DN as its ALIAS_ATTRIBUTE.  The move operation in
particular would benefit greatest from the creation of another alias index separate from
the one and sub .  The index will probably never be that large but it will help speed up
several operations and is well worth it: with a full database a fraction of a percent of the
entries would be aliases at most.  This index is used to avoid needlessly resusitating
entries to test if they are aliases while conducting protocol operations.

Besides changes to add, modify, delete and move major changes will be required on the
search engine to implement the dereferencing itself.  These changes will be documented
within the module as internal documentation.  



Conclusions

We conclude by answering the original questions posed:

1. Does alias dereferencing occur before or after the application of a filter?  Alias
dereferencing is always conducted before filter application takes place.  With
our implementation scheme the notion of timing is irrelevant.  The bottom
line is: filters must be applied on primary DNs when dereferencing.

2. Does dereferencing follow alias chains? In other words when dereferencing is
enabled does the process continue dereferencing an alias chain until a non-alias
entry is found?  Alias chains are prevented at the point of addition by
rejecting the add operation.  This is a constraint applied to alias creation by
the server to prevent potentially dangerous and wasteful alias constructs
without loosing the benefits of aliases.

3. How do we handle alias imposed cycles while conducting search? References
to parents and other relatives could impose cycles.  What mechanisms will be
put in place to bound search preventing infinite loops within alias imposed
cycles?  Alias cycles are prevented at the point of addition by rejecting the
add operation.  This is yet another constraint applied to alias creation by the
server to prevent potentially dangerous and wasteful alias constructs without
loosing the benefits of aliases.

4. How do we elegantly make JNDI environment parameters and other search
modifying aspects of a JNDI Context available deep within the search engine?
The mechanism used to extract and assemble these parameters are irrelevant
to the manner in which they are used to conduct the search operation.
However the JNDI environment parameters need for handling aliases are
added to the filter AST as an extra constraint node called a scope node.

5. When traversing aliases to return entries beyond the expected scope of the
search base, which absolute path should be returned for entry results: the
primary distinguished name or the alternative distinguished name through the
alias?  A JNDI environment parameter can later be used to modify the
semantics of search operations to switch from using primary distinguished
names in entry returns to using relative distinguished names in entry
returns.  The JNDI provider can then react accordingly to determine
whether relative names are returned as opposed to absolute distinguished
names via the isRelative marker.



Besides answering these critical questions we have elaborated on the means to implement
the added alias dereferencing phase of search.



Appendix A. Alias Error Codes

Because LDAP and X.500 allow aliases to exist in inconsistent states, we thought it
would be appropriate to list the error codes associated with them below:

Error
Code Code Name Description

33 aliasProblem An alias has been dereferenced which names
no object - a broken link where destination
entry does not exist. [X511, Section 12.5]

36 aliasDereferencingProblem An alias was encountered in a situation where
it was not allowed.  For example an add that
creates an alias to another alias could throw
this error or a delete operation going through
an alias.  If the client does not have read
permission for the aliasedObjectName
attribute and its value then the error should be
returned. [X511, Section 7.11.1.1]


