
Apache Avro# 1.8.1 Getting Started
(Java)

Table of contents

1 Download...2

2 Defining a schema..3

3 Serializing and deserializing with code generation..3

3.1 Compiling the schema... 3

3.2 Creating Users... 4

3.3 Serializing..5

3.4 Deserializing..5

3.5 Compiling and running the example code...6

4 Serializing and deserializing without code generation.. 6

4.1 Creating users.. 7

4.2 Serializing..7

4.3 Deserializing..8

4.4 Compiling and running the example code...9

Copyright © 2012 The Apache Software Foundation. All rights reserved.

This is a short guide for getting started with Apache Avro# using Java. This guide only
covers using Avro for data serialization; see Patrick Hunt's Avro RPC Quick Start for a good
introduction to using Avro for RPC.

1. Download

Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded
from the Apache Avro# Releases page. This guide uses Avro 1.8.1, the latest version at the
time of writing. For the examples in this guide, download avro-1.8.1.jar and
avro-tools-1.8.1.jar. The Avro Java implementation also depends on the Jackson JSON
library. From the Jackson download page, download the core-asl and mapper-asl jars. Add
avro-1.8.1.jar and the Jackson jars to your project's classpath (avro-tools will be used for
code generation).

Alternatively, if you are using Maven, add the following dependency to your POM:

<dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>1.8.1</version>

</dependency>

As well as the Avro Maven plugin (for performing code generation):

<plugin>
<groupId>org.apache.avro</groupId>
<artifactId>avro-maven-plugin</artifactId>
<version>1.8.1</version>
<executions>
<execution>
<phase>generate-sources</phase>
<goals>
<goal>schema</goal>

</goals>
<configuration>

<sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory>
<outputDirectory>${project.basedir}/src/main/java/</outputDirectory>

</configuration>
</execution>

</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.6</source>
<target>1.6</target>

</configuration>

Apache Avro# 1.8.1 Getting Started (Java)

Page 2
Copyright © 2012 The Apache Software Foundation. All rights reserved.

https://github.com/phunt/avro-rpc-quickstart
http://avro.apache.org/releases.html
http://jackson.codehaus.org/
http://wiki.fasterxml.com/JacksonDownload

</plugin>

You may also build the required Avro jars from source. Building Avro is beyond the scope of
this guide; see the Build Documentation page in the wiki for more information.

2. Defining a schema

Avro schemas are defined using JSON. Schemas are composed of primitive types (null,
boolean, int, long, float, double, bytes, and string) and complex types
(record, enum, array, map, union, and fixed). You can learn more about Avro
schemas and types from the specification, but for now let's start with a simple schema
example, user.avsc:

{"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [

{"name": "name", "type": "string"},
{"name": "favorite_number", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}

]
}

This schema defines a record representing a hypothetical user. (Note that a schema file can
only contain a single schema definition.) At minimum, a record definition must include its
type ("type": "record"), a name ("name": "User"), and fields, in this case name,
favorite_number, and favorite_color. We also define a namespace
("namespace": "example.avro"), which together with the name attribute defines the
"full name" of the schema (example.avro.User in this case).

Fields are defined via an array of objects, each of which defines a name and type (other
attributes are optional, see the record specification for more details). The type attribute of a
field is another schema object, which can be either a primitive or complex type. For example,
the name field of our User schema is the primitive type string, whereas the
favorite_number and favorite_color fields are both unions, represented by
JSON arrays. unions are a complex type that can be any of the types listed in the array; e.g.,
favorite_number can either be an int or null, essentially making it an optional field.

3. Serializing and deserializing with code generation

3.1. Compiling the schema

Code generation allows us to automatically create classes based on our previously-defined

Apache Avro# 1.8.1 Getting Started (Java)

Page 3
Copyright © 2012 The Apache Software Foundation. All rights reserved.

https://cwiki.apache.org/AVRO/build-documentation.html
spec.html#schema_primitive
spec.html#schema_complex
spec.html#schema_record

schema. Once we have defined the relevant classes, there is no need to use the schema
directly in our programs. We use the avro-tools jar to generate code as follows:

java -jar /path/to/avro-tools-1.8.1.jar compile schema <schema file>
<destination>

This will generate the appropriate source files in a package based on the schema's namespace
in the provided destination folder. For instance, to generate a User class in package
example.avro from the schema defined above, run

java -jar /path/to/avro-tools-1.8.1.jar compile schema user.avsc .

Note that if you using the Avro Maven plugin, there is no need to manually invoke the
schema compiler; the plugin automatically performs code generation on any .avsc files
present in the configured source directory.

3.2. Creating Users

Now that we've completed the code generation, let's create some Users, serialize them to a
data file on disk, and then read back the file and deserialize the User objects.

First let's create some Users and set their fields.

User user1 = new User();
user1.setName("Alyssa");
user1.setFavoriteNumber(256);
// Leave favorite color null

// Alternate constructor
User user2 = new User("Ben", 7, "red");

// Construct via builder
User user3 = User.newBuilder()

.setName("Charlie")

.setFavoriteColor("blue")

.setFavoriteNumber(null)

.build();

As shown in this example, Avro objects can be created either by invoking a constructor
directly or by using a builder. Unlike constructors, builders will automatically set any default
values specified in the schema. Additionally, builders validate the data as it set, whereas
objects constructed directly will not cause an error until the object is serialized. However,
using constructors directly generally offers better performance, as builders create a copy of
the datastructure before it is written.

Apache Avro# 1.8.1 Getting Started (Java)

Page 4
Copyright © 2012 The Apache Software Foundation. All rights reserved.

Note that we do not set user1's favorite color. Since that record is of type ["string",
"null"], we can either set it to a string or leave it null; it is essentially optional.
Similarly, we set user3's favorite number to null (using a builder requires setting all fields,
even if they are null).

3.3. Serializing

Now let's serialize our Users to disk.

// Serialize user1, user2 and user3 to disk
DatumWriter<User> userDatumWriter = new
SpecificDatumWriter<User>(User.class);
DataFileWriter<User> dataFileWriter = new
DataFileWriter<User>(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("users.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();

We create a DatumWriter, which converts Java objects into an in-memory serialized
format. The SpecificDatumWriter class is used with generated classes and extracts the
schema from the specified generated type.

Next we create a DataFileWriter, which writes the serialized records, as well as the
schema, to the file specified in the dataFileWriter.create call. We write our users to
the file via calls to the dataFileWriter.append method. When we are done writing,
we close the data file.

3.4. Deserializing

Finally, let's deserialize the data file we just created.

// Deserialize Users from disk
DatumReader<User> userDatumReader = new
SpecificDatumReader<User>(User.class);
DataFileReader<User> dataFileReader = new DataFileReader<User>(file,
userDatumReader);
User user = null;
while (dataFileReader.hasNext()) {
// Reuse user object by passing it to next(). This saves us from
// allocating and garbage collecting many objects for files with
// many items.
user = dataFileReader.next(user);
System.out.println(user);
}

Apache Avro# 1.8.1 Getting Started (Java)

Page 5
Copyright © 2012 The Apache Software Foundation. All rights reserved.

This snippet will output:

{"name": "Alyssa", "favorite_number": 256, "favorite_color": null}
{"name": "Ben", "favorite_number": 7, "favorite_color": "red"}
{"name": "Charlie", "favorite_number": null, "favorite_color": "blue"}

Deserializing is very similar to serializing. We create a SpecificDatumReader,
analogous to the SpecificDatumWriter we used in serialization, which converts
in-memory serialized items into instances of our generated class, in this case User. We pass
the DatumReader and the previously created File to a DataFileReader, analogous to
the DataFileWriter, which reads the data file on disk.

Next we use the DataFileReader to iterate through the serialized Users and print the
deserialized object to stdout. Note how we perform the iteration: we create a single User
object which we store the current deserialized user in, and pass this record object to every
call of dataFileReader.next. This is a performance optimization that allows the
DataFileReader to reuse the same User object rather than allocating a new User for
every iteration, which can be very expensive in terms of object allocation and garbage
collection if we deserialize a large data file. While this technique is the standard way to
iterate through a data file, it's also possible to use for (User user :
dataFileReader) if performance is not a concern.

3.5. Compiling and running the example code

This example code is included as a Maven project in the examples/java-example directory in
the Avro docs. From this directory, execute the following commands to build and run the
example:

$ mvn compile # includes code generation via Avro Maven plugin
$ mvn -q exec:java -Dexec.mainClass=example.SpecificMain

4. Serializing and deserializing without code generation

Data in Avro is always stored with its corresponding schema, meaning we can always read a
serialized item regardless of whether we know the schema ahead of time. This allows us to
perform serialization and deserialization without code generation.

Let's go over the same example as in the previous section, but without using code generation:
we'll create some users, serialize them to a data file on disk, and then read back the file and
deserialize the users objects.

Apache Avro# 1.8.1 Getting Started (Java)

Page 6
Copyright © 2012 The Apache Software Foundation. All rights reserved.

4.1. Creating users

First, we use a Parser to read our schema definition and create a Schema object.

Schema schema = new Schema.Parser().parse(new File("user.avsc"));

Using this schema, let's create some users.

GenericRecord user1 = new GenericData.Record(schema);
user1.put("name", "Alyssa");
user1.put("favorite_number", 256);
// Leave favorite color null

GenericRecord user2 = new GenericData.Record(schema);
user2.put("name", "Ben");
user2.put("favorite_number", 7);
user2.put("favorite_color", "red");

Since we're not using code generation, we use GenericRecords to represent users.
GenericRecord uses the schema to verify that we only specify valid fields. If we try to
set a non-existent field (e.g., user1.put("favorite_animal", "cat")), we'll get
an AvroRuntimeException when we run the program.

Note that we do not set user1's favorite color. Since that record is of type ["string",
"null"], we can either set it to a string or leave it null; it is essentially optional.

4.2. Serializing

Now that we've created our user objects, serializing and deserializing them is almost identical
to the example above which uses code generation. The main difference is that we use generic
instead of specific readers and writers.

First we'll serialize our users to a data file on disk.

// Serialize user1 and user2 to disk
File file = new File("users.avro");
DatumWriter<GenericRecord> datumWriter = new
GenericDatumWriter<GenericRecord>(schema);
DataFileWriter<GenericRecord> dataFileWriter = new
DataFileWriter<GenericRecord>(datumWriter);
dataFileWriter.create(schema, file);
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.close();

Apache Avro# 1.8.1 Getting Started (Java)

Page 7
Copyright © 2012 The Apache Software Foundation. All rights reserved.

We create a DatumWriter, which converts Java objects into an in-memory serialized
format. Since we are not using code generation, we create a GenericDatumWriter. It
requires the schema both to determine how to write the GenericRecords and to verify
that all non-nullable fields are present.

As in the code generation example, we also create a DataFileWriter, which writes the
serialized records, as well as the schema, to the file specified in the
dataFileWriter.create call. We write our users to the file via calls to the
dataFileWriter.append method. When we are done writing, we close the data file.

4.3. Deserializing

Finally, we'll deserialize the data file we just created.

// Deserialize users from disk
DatumReader<GenericRecord> datumReader = new
GenericDatumReader<GenericRecord>(schema);
DataFileReader<GenericRecord> dataFileReader = new
DataFileReader<GenericRecord>(file, datumReader);
GenericRecord user = null;
while (dataFileReader.hasNext()) {
// Reuse user object by passing it to next(). This saves us from
// allocating and garbage collecting many objects for files with
// many items.
user = dataFileReader.next(user);
System.out.println(user);

This outputs:

{"name": "Alyssa", "favorite_number": 256, "favorite_color": null}
{"name": "Ben", "favorite_number": 7, "favorite_color": "red"}

Deserializing is very similar to serializing. We create a GenericDatumReader,
analogous to the GenericDatumWriter we used in serialization, which converts
in-memory serialized items into GenericRecords. We pass the DatumReader and the
previously created File to a DataFileReader, analogous to the DataFileWriter,
which reads the data file on disk.

Next, we use the DataFileReader to iterate through the serialized users and print the
deserialized object to stdout. Note how we perform the iteration: we create a single
GenericRecord object which we store the current deserialized user in, and pass this
record object to every call of dataFileReader.next. This is a performance
optimization that allows the DataFileReader to reuse the same record object rather than
allocating a new GenericRecord for every iteration, which can be very expensive in

Apache Avro# 1.8.1 Getting Started (Java)

Page 8
Copyright © 2012 The Apache Software Foundation. All rights reserved.

terms of object allocation and garbage collection if we deserialize a large data file. While this
technique is the standard way to iterate through a data file, it's also possible to use for
(GenericRecord user : dataFileReader) if performance is not a concern.

4.4. Compiling and running the example code

This example code is included as a Maven project in the examples/java-example directory in
the Avro docs. From this directory, execute the following commands to build and run the
example:

$ mvn compile
$ mvn -q exec:java -Dexec.mainClass=example.GenericMain

Apache Avro# 1.8.1 Getting Started (Java)

Page 9
Copyright © 2012 The Apache Software Foundation. All rights reserved.

	1 Download
	2 Defining a schema
	3 Serializing and deserializing with code generation
	3.1 Compiling the schema
	3.2 Creating Users
	3.3 Serializing
	3.4 Deserializing
	3.5 Compiling and running the example code

	4 Serializing and deserializing without code generation
	4.1 Creating users
	4.2 Serializing
	4.3 Deserializing
	4.4 Compiling and running the example code

