
Avro 1.3.2 Specification

Table of contents

1 Introduction..2

2 Schema Declaration... 2

2.1 Primitive Types... 2

2.2 Complex Types..2

2.3 Names.. 5

3 Data Serialization...6

3.1 Encodings.. 6

3.2 Binary Encoding..6

3.3 JSON Encoding... 9

4 Sort Order...10

5 Object Container Files... 10

5.1 Required Codecs..12

6 Protocol Declaration.. 12

6.1 Messages..12

6.2 Sample Protocol...13

7 Protocol Wire Format...13

7.1 Message Transport...13

7.2 Message Framing...14

7.3 Handshake... 15

7.4 Call Format..16

8 Schema Resolution...17

Copyright © 2009 The Apache Software Foundation. All rights reserved.

1. Introduction

This document defines Avro. It is intended to be the authoritative specification.
Implementations of Avro must adhere to this document.

2. Schema Declaration

A Schema is represented in JSON by one of:

• A JSON string, naming a defined type.
• A JSON object, of the form:

{"type": "typeName" ...attributes...}
where typeName is either a primitive or derived type name, as defined below. Attributes
not defined in this document are permitted as metadata, but must not affect the format of
serialized data.

• A JSON array, representing a union of embedded types.

2.1. Primitive Types

The set of primitive type names is:

• null: no value
• boolean: a binary value
• int: 32-bit signed integer
• long: 64-bit signed integer
• float: single precision (32-bit) IEEE 754 floating-point number
• double: double precision (64-bit) IEEE 754 floating-point number
• bytes: sequence of 8-bit unsigned bytes
• string: unicode character sequence

Primitive types have no specified attributes.

Primitive type names are also defined type names. Thus, for example, the schema "string" is
equivalent to:
{"type": "string"}

2.2. Complex Types

Avro supports six kinds of complex types: records, enums, arrays, maps, unions and fixed.

2.2.1. Records

Records use the type name "record" and support three attributes:

Avro 1.3.2 Specification

Page 2
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://www.json.org/

• name: a JSON string providing the name of the record (required).
• namespace, a JSON string that qualifies the name;
• doc: a JSON string providing documentation to the user of this schema (optional).
• fields: a JSON array, listing fields (required). Each field is a JSON object with the

following attributes:
• name: a JSON string providing the name of the field (required), and
• doc: a JSON string describing this field for users (optional).
• type: A JSON object defining a schema, or a JSON string naming a record

definition (required).
• default: A default value for this field, used when reading instances that lack this

field (optional). Permitted values depend on the field's schema type, according to the
table below. Default values for union fields correspond to the first schema in the
union. Default values for bytes and fixed fields are JSON strings, where Unicode
code points 0-255 are mapped to unsigned 8-bit byte values 0-255.

avro type json type example

null null null

boolean boolean true

int,long integer 1

float,double number 1.1

bytes string "\u00FF"

string string "foo"

record object {"a": 1}

enum string "FOO"

array array [1]

map object {"a": 1}

fixed string "\u00ff"

Table 1: field default values
• order: specifies how this field impacts sort ordering of this record (optional). Valid

values are "ascending" (the default), "descending", or "ignore". For more details on
how this is used, see the the sort order section below.

For example, a linked-list of 64-bit values may be defined with:

{

Avro 1.3.2 Specification

Page 3
Copyright © 2009 The Apache Software Foundation. All rights reserved.

"type": "record",
"name": "LongList",
"fields" : [
{"name": "value", "type": "long"}, // each element has a

long
{"name": "next", "type": ["LongList", "null"]} // optional next element

]
}

2.2.2. Enums

Enums use the type name "enum" and support the following attributes:

• name: a JSON string providing the name of the enum (required).
• namespace, a JSON string that qualifies the name;
• doc: a JSON string providing documentation to the user of this schema (optional).
• symbols: a JSON array, listing symbols, as JSON strings (required). All symbols in an

enum must be unique; duplicates are prohibited.

For example, playing card suits might be defined with:

{ "type": "enum",
"name": "Suit",
"symbols" : ["SPADES", "HEARTS", "DIAMONDS", "CLUBS"]

}

2.2.3. Arrays

Arrays use the type name "array" and support a single attribute:

• items: the schema of the array's items.

For example, an array of strings is declared with:
{"type": "array", "items": "string"}

2.2.4. Maps

Maps use the type name "map" and support one attribute:

• values: the schema of the map's values.

Map keys are assumed to be strings.

For example, a map from string to long is declared with:
{"type": "map", "values": "long"}

2.2.5. Unions

Avro 1.3.2 Specification

Page 4
Copyright © 2009 The Apache Software Foundation. All rights reserved.

Unions, as mentioned above, are represented using JSON arrays. For example,
["string", "null"] declares a schema which may be either a string or null.

Unions may not contain more than one schema with the same type, except for the named
types record, fixed and enum. For example, unions containing two array types or two map
types are not permitted, but two types with different names are permitted. (Names permit
efficient resolution when reading and writing unions.)

Unions may not immediately contain other unions.

2.2.6. Fixed

Fixed uses the type name "fixed" and supports two attributes:

• name: a string naming this fixed (required).
• namespace, a string that qualifies the name;
• size: an integer, specifying the number of bytes per value (required).

For example, 16-byte quantity may be declared with:
{"type": "fixed", "size": 16, "name": "md5"}

2.3. Names

Record, enums and fixed are named types. Each has a fullname that is composed of two
parts; a name and a namespace. Equality of names is defined on the fullname.

The name portion of a fullname, and record field names must:

• start with [A-Za-z_]
• subsequently contain only [A-Za-z0-9_]

A namespace is a dot-separated sequence of such names.

In record, enum and fixed definitions, the fullname is determined in one of the following
ways:

• A name and namespace are both specified. For example, one might use "name": "X",
"namespace": "org.foo" to indicate the fullname org.foo.X.

• A fullname is specified. If the name specified contains a dot, then it is assumed to be a
fullname, and any namespace also specified is ignored. For example, use "name":
"org.foo.X" to indicate the fullname org.foo.X.

• A name only is specified, i.e., a name that contains no dots. In this case the namespace is
taken from the most tightly enclosing schema or protocol. For example, if "name":
"X" is specified, and this occurs within a field of the record definition of org.foo.Y,
then the fullname is org.foo.X.

Avro 1.3.2 Specification

Page 5
Copyright © 2009 The Apache Software Foundation. All rights reserved.

References to previously defined names are as in the latter two cases above: if they contain a
dot they are a fullname, if they do not contain a dot, the namespace is the namespace of the
enclosing definition.

Primitive type names have no namespace and their names may not be defined in any
namespace. A schema may only contain multiple definitions of a fullname if the definitions
are equivalent.

3. Data Serialization

Avro data is always serialized with its schema. Files that store Avro data should always also
include the schema for that data in the same file. Avro-based remote procedure call (RPC)
systems must also guarantee that remote recipients of data have a copy of the schema used to
write that data.

Because the schema used to write data is always available when the data is read, Avro data
itself is not tagged with type information. The schema is required to parse data.

In general, both serialization and deserialization proceed as a depth-first, left-to-right
traversal of the schema, serializing primitive types as they are encountered.

3.1. Encodings

Avro specifies two serialization encodings: binary and JSON. Most applications will use the
binary encoding, as it is smaller and faster. But, for debugging and web-based applications,
the JSON encoding may sometimes be appropriate.

3.2. Binary Encoding

3.2.1. Primitive Types

Primitive types are encoded in binary as follows:

• null is written as zero bytes.
• a boolean is written as a single byte whose value is either 0 (false) or 1 (true).
• int and long values are written using variable-length zig-zag coding. Some examples:

value hex

0 00

-1 01

1 02

Avro 1.3.2 Specification

Page 6
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://lucene.apache.org/java/2_4_0/fileformats.html#VInt
http://code.google.com/apis/protocolbuffers/docs/encoding.html#types

-2 03

2 04

...

-64 7f

64 80 01

...

• a float is written as 4 bytes. The float is converted into a 32-bit integer using a method
equivalent to Java's floatToIntBits and then encoded in little-endian format.

• a double is written as 8 bytes. The double is converted into a 64-bit integer using a
method equivalent to Java's doubleToLongBits and then encoded in little-endian format.

• bytes are encoded as a long followed by that many bytes of data.
• a string is encoded as a long followed by that many bytes of UTF-8 encoded

character data.

For example, the three-character string "foo" would be encoded as the long value 3
(encoded as hex 06) followed by the UTF-8 encoding of 'f', 'o', and 'o' (the hex bytes 66
6f 6f):
06 66 6f 6f

3.2.2. Complex Types

Complex types are encoded in binary as follows:

3.2.2.1. Records

A record is encoded by encoding the values of its fields in the order that they are declared. In
other words, a record is encoded as just the concatenation of the encodings of its fields. Field
values are encoded per their schema.

For example, the record schema

{
"type": "record",
"name": "test",
"fields" : [
{"name": "a", "type": "long"},
{"name": "b", "type": "string"}
]
}

Avro 1.3.2 Specification

Page 7
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatToIntBits%28float%29
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleToLongBits%28double%29

An instance of this record whose a field has value 27 (encoded as hex 36) and whose b field
has value "foo" (encoded as hex bytes 06 66 6f 6f), would be encoded simply as the
concatenation of these, namely the hex byte sequence:
36 06 66 6f 6f

3.2.2.2. Enums

An enum is encoded by a int, representing the zero-based position of the symbol in the
schema.

For example, consider the enum:

{"type": "enum", "name": "Foo", "symbols": ["A", "B", "C",
"D"] }

This would be encoded by an int between zero and three, with zero indicating "A", and 3
indicating "D".

3.2.2.3. Arrays

Arrays are encoded as a series of blocks. Each block consists of a long count value,
followed by that many array items. A block with count zero indicates the end of the array.
Each item is encoded per the array's item schema.

If a block's count is negative, its absolute value is used, and the count is followed
immediately by a long block size indicating the number of bytes in the block. This block
size permits fast skipping through data, e.g., when projecting a record to a subset of its fields.

For example, the array schema
{"type": "array", "items": "long"}

an array containing the items 3 and 27 could be encoded as the long value 2 (encoded as hex
04) followed by long values 3 and 27 (encoded as hex 06 36) terminated by zero:
04 06 36 00

The blocked representation permits one to read and write arrays larger than can be buffered
in memory, since one can start writing items without knowing the full length of the array.

3.2.2.4. Maps

Maps are encoded as a series of blocks. Each block consists of a long count value, followed
by that many key/value pairs. A block with count zero indicates the end of the map. Each
item is encoded per the map's value schema.

Avro 1.3.2 Specification

Page 8
Copyright © 2009 The Apache Software Foundation. All rights reserved.

If a block's count is negative, its absolute value is used, and the count is followed
immediately by a long block size indicating the number of bytes in the block. This block
size permits fast skipping through data, e.g., when projecting a record to a subset of its fields.

The blocked representation permits one to read and write maps larger than can be buffered in
memory, since one can start writing items without knowing the full length of the map.

3.2.2.5. Unions

A union is encoded by first writing a long value indicating the zero-based position within
the union of the schema of its value. The value is then encoded per the indicated schema
within the union.

For example, the union schema ["string","null"] would encode:

• null as the integer 1 (the index of "null" in the union, encoded as hex 02):
02

• the string "a" as zero (the index of "string" in the union), followed by the serialized
string:
00 02 61

3.2.2.6. Fixed

Fixed instances are encoded using the number of bytes declared in the schema.

3.3. JSON Encoding

Except for unions, the JSON encoding is the same as is used to encode field default values.

The value of a union is encoded in JSON as follows:

• if its type is null, then it is encoded as a JSON null;
• otherwise it is encoded as a JSON object with one name/value pair whose name is the

type's name and whose value is the recursively encoded value. For Avro's named types
(record, fixed or enum) the user-specified name is used, for other types the type name is
used.

For example, the union schema ["null","string","Foo"], where Foo is a record
name, would encode:

• null as null;
• the string "a" as {"string": "a"}; and
• a Foo instance as {"Foo": {...}}, where {...} indicates the JSON encoding of a

Foo instance.

Avro 1.3.2 Specification

Page 9
Copyright © 2009 The Apache Software Foundation. All rights reserved.

Note that a schema is still required to correctly process JSON-encoded data. For example, the
JSON encoding does not distinguish between int and long, float and double, records
and maps, enums and strings, etc.

4. Sort Order

Avro defines a standard sort order for data. This permits data written by one system to be
efficiently sorted by another system. This can be an important optimization, as sort order
comparisons are sometimes the most frequent per-object operation. Note also that Avro
binary-encoded data can be efficiently ordered without deserializing it to objects.

Data items may only be compared if they have identical schemas. Pairwise comparisons are
implemented recursively with a depth-first, left-to-right traversal of the schema. The first
mismatch encountered determines the order of the items.

Two items with the same schema are compared according to the following rules.

• null data is always equal.
• boolean data is ordered with false before true.
• int, long, float and double data is ordered by ascending numeric value.
• bytes and fixed data are compared lexicographically by unsigned 8-bit values.
• string data is compared lexicographically by Unicode code point. Note that since

UTF-8 is used as the binary encoding for strings, sorting of bytes and string binary data is
identical.

• array data is compared lexicographically by element.
• enum data is ordered by the symbol's position in the enum schema. For example, an

enum whose symbols are ["z", "a"] would sort "z" values before "a" values.
• union data is first ordered by the branch within the union, and, within that, by the type

of the branch. For example, an ["int", "string"] union would order all int values
before all string values, with the ints and strings themselves ordered as defined above.

• record data is ordered lexicographically by field. If a field specifies that its order is:
• "ascending", then the order of its values is unaltered.
• "descending", then the order of its values is reversed.
• "ignore", then its values are ignored when sorting.

• map data may not be compared. It is an error to attempt to compare data containing maps
unless those maps are in an "order":"ignore" record field.

5. Object Container Files

Avro includes a simple object container file format. A file has a schema, and all objects
stored in the file must be written according to that schema, using binary encoding. Objects

Avro 1.3.2 Specification

Page 10
Copyright © 2009 The Apache Software Foundation. All rights reserved.

are stored in blocks that may be compressed. Syncronization markers are used between
blocks to permit efficient splitting of files for MapReduce processing.

Files may include arbitrary user-specified metadata.

A file consists of:

• A file header, followed by
• one or more file data blocks.

A file header consists of:

• Four bytes, ASCII 'O', 'b', 'j', followed by 1.
• file metadata, including the schema.
• The 16-byte, randomly-generated sync marker for this file.

File metadata consists of:

• A long indicating the number of metadata key/value pairs.
• For each pair, a string key and bytes value.

All metadata properties that start with "avro." are reserved. The following file metadata
properties are currently used:

• avro.schema contains the schema of objects stored in the file, as JSON data (required).
• avro.codec the name of the compression codec used to compress blocks, as a string.

Implementations are required to support the following codecs: "null" and "deflate". If
codec is absent, it is assumed to be "null". The codecs are described with more detail
below.

A file header is thus described by the following schema:

{"type": "record", "name": "org.apache.avro.file.Header",
"fields" : [
{"name": "magic", "type": {"type": "fixed", "name": "Magic", "size":

4}},
{"name": "meta", "type": {"type": "map", "values": "bytes"}},
{"name": "sync", "type": {"type": "fixed", "name": "Sync", "size": 16}},
]

}

A file data block consists of:

• A long indicating the count of objects in this block.
• A long indicating the size in bytes of the serialized objects in the current block, after any

codec is applied
• The serialized objects. If a codec is specified, this is compressed by that codec.

Avro 1.3.2 Specification

Page 11
Copyright © 2009 The Apache Software Foundation. All rights reserved.

• The file's 16-byte sync marker.

Thus, each block's binary data can be efficiently extracted or skipped without deserializing
the contents. The combination of block size, object counts, and sync markers enable
detection of corrupt blocks and help ensure data integrity.

5.1. Required Codecs

5.1.1. null

The "null" codec simply passes through data uncompressed.

5.1.2. deflate

The "deflate" codec writes the data block using the deflate algorithm as specified in RFC
1951, and typically implemented using the zlib library. Note that this format (unlike the "zlib
format" in RFC 1950) does not have a checksum.

6. Protocol Declaration

Avro protocols describe RPC interfaces. Like schemas, they are defined with JSON text.

A protocol is a JSON object with the following attributes:

• protocol, a string, the name of the protocol (required);
• namespace, an optional string that qualifies the name;
• doc, an optional string describing this protocol;
• types, an optional list of definitions of named types (records, enums, fixed and errors). An

error definition is just like a record definition except it uses "error" instead of "record".
Note that forward references to named types are not permitted.

• messages, an optional JSON object whose keys are message names and whose values are
objects whose attributes are described below. No two messages may have the same name.

The name and namespace qualification rules defined for schema objects apply to protocols as
well.

6.1. Messages

A message has attributes:

• a doc, an optional description of the message,
• a request, a list of named, typed parameter schemas (this has the same form as the fields

of a record declaration);

Avro 1.3.2 Specification

Page 12
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://www.isi.edu/in-notes/rfc1951.txt
http://www.isi.edu/in-notes/rfc1951.txt

• a response schema; and
• an optional union of error schemas.

A request parameter list is processed equivalently to an anonymous record. Since record field
lists may vary between reader and writer, request parameters may also differ between the
caller and responder, and such differences are resolved in the same manner as record field
differences.

6.2. Sample Protocol

For example, one may define a simple HelloWorld protocol with:

{
"namespace": "com.acme",
"protocol": "HelloWorld",
"doc": "Protocol Greetings",

"types": [
{"name": "Greeting", "type": "record", "fields": [
{"name": "message", "type": "string"}]},

{"name": "Curse", "type": "error", "fields": [
{"name": "message", "type": "string"}]}

],

"messages": {
"hello": {
"doc": "Say hello.",
"request": [{"name": "greeting", "type": "Greeting" }],
"response": "Greeting",
"errors": ["Curse"]

}
}

}

7. Protocol Wire Format

7.1. Message Transport

Messages may be transmitted via different transport mechanisms.

To the transport, a message is an opaque byte sequence.

A transport is a system that supports:

• transmission of request messages
• receipt of corresponding response messages

Avro 1.3.2 Specification

Page 13
Copyright © 2009 The Apache Software Foundation. All rights reserved.

Servers will send a response message back to the client corresponding to each request
message. The mechanism of that correspondance is transport-specific. For example, in
HTTP it might be implicit, since HTTP directly supports requests and responses. But a
transport that multiplexes many client threads over a single socket would need to tag
messages with unique identifiers.

7.1.1. HTTP as Transport

When HTTP is used as a transport, each Avro message exchange is an HTTP
request/response pair. All messages of an Avro protocol should share a single URL at an
HTTP server. Other protocols may also use that URL. Both normal and error Avro response
messages should use the 200 (OK) response code. The chunked encoding may be used for
requests and responses, but, regardless the Avro request and response are the entire content
of an HTTP request and response. The HTTP Content-Type of requests and responses should
be specified as "avro/binary". Requests should be made using the POST method.

7.2. Message Framing

Avro messages are framed as a list of buffers.

Framing is a layer between messages and the transport. It exists to optimize certain
operations.

The format of framed message data is:

• a series of buffers, where each buffer consists of:
• a four-byte, big-endian buffer length, followed by
• that many bytes of buffer data.

• A message is always terminated by a zero-lenghted buffer.

Framing is transparent to request and response message formats (described below). Any
message may be presented as a single or multiple buffers.

Framing can permit readers to more efficiently get different buffers from different sources
and for writers to more efficiently store different buffers to different destinations. In
particular, it can reduce the number of times large binary objects are copied. For example, if
an RPC parameter consists of a megabyte of file data, that data can be copied directly to a
socket from a file descriptor, and, on the other end, it could be written directly to a file
descriptor, never entering user space.

A simple, recommended, framing policy is for writers to create a new segment whenever a
single binary object is written that is larger than a normal output buffer. Small objects are

Avro 1.3.2 Specification

Page 14
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://www.w3.org/Protocols/rfc2616/rfc2616.html

then appended in buffers, while larger objects are written as their own buffers. When a reader
then tries to read a large object the runtime can hand it an entire buffer directly, without
having to copy it.

7.3. Handshake

RPC requests and responses are prefixed by handshakes. The purpose of the handshake is to
ensure that the client and the server have each other's protocol definition, so that the client
can correctly deserialize responses, and the server can correctly deserialize requests. Both
clients and servers should maintain a cache of recently seen protocols, so that, in most cases,
a handshake will be completed without extra round-trip network exchanges or the
transmission of full protocol text.

The handshake process uses the following record schemas:

{
"type": "record",
"name": "HandshakeRequest", "namespace":"org.apache.avro.ipc",
"fields": [
{"name": "clientHash",
"type": {"type": "fixed", "name": "MD5", "size": 16}},
{"name": "clientProtocol", "type": ["null", "string"]},
{"name": "serverHash", "type": "MD5"},
{"name": "meta", "type": ["null", {"type": "map", "values": "bytes"}]}

]
}
{
"type": "record",
"name": "HandshakeResponse", "namespace": "org.apache.avro.ipc",
"fields": [
{"name": "match",
"type": {"type": "enum", "name": "HandshakeMatch",

"symbols": ["BOTH", "CLIENT", "NONE"]}},
{"name": "serverProtocol",
"type": ["null", "string"]},
{"name": "serverHash",
"type": ["null", {"type": "fixed", "name": "MD5", "size": 16}]},
{"name": "meta",
"type": ["null", {"type": "map", "values": "bytes"}]}

]
}

• A client first prefixes each request with a HandshakeRequest containing just the
hash of its protocol and of the server's protocol (clientHash!=null,
clientProtocol=null, serverHash!=null), where the hashes are 128-bit
MD5 hashes of the JSON protocol text. If a client has never connected to a given server,
it sends its hash as a guess of the server's hash, otherwise it sends the hash that it

Avro 1.3.2 Specification

Page 15
Copyright © 2009 The Apache Software Foundation. All rights reserved.

previously obtained from this server.
• The server responds with a HandshakeResponse containing one of:

• match=BOTH, serverProtocol=null, serverHash=null if the client
sent the valid hash of the server's protocol and the server knows what protocol
corresponds to the client's hash. In this case, the request is complete and the response
data immediately follows the HandshakeResponse.

• match=CLIENT, serverProtocol!=null, serverHash!=null if the
server has previously seen the client's protocol, but the client sent an incorrect hash of
the server's protocol. The request is complete and the response data immediately
follows the HandshakeResponse. The client must use the returned protocol to process
the response and should also cache that protocol and its hash for future interactions
with this server.

• match=NONE if the server has not previously seen the client's protocol. The
serverHash and serverProtocol may also be non-null if the server's protocol
hash was incorrect.

In this case the client must then re-submit its request with its protocol text
(clientHash!=null, clientProtocol!=null, serverHash!=null)
and the server should respond with a successful match (match=BOTH,
serverProtocol=null, serverHash=null) as above.

The meta field is reserved for future handshake enhancements.

7.4. Call Format

A call consists of a request message paired with its resulting response or error message.
Requests and responses contain extensible metadata, and both kinds of messages are framed
as described above.

The format of a call request is:

• request metadata, a map with values of type bytes
• the message name, an Avro string, followed by
• the message parameters. Parameters are serialized according to the message's request

declaration.

The format of a call response is:

• response metadata, a map with values of type bytes
• a one-byte error flag boolean, followed by either:

• if the error flag is false, the message response, serialized per the message's response
schema.

• if the error flag is true, the error, serialized per the message's error union schema.

Avro 1.3.2 Specification

Page 16
Copyright © 2009 The Apache Software Foundation. All rights reserved.

8. Schema Resolution

A reader of Avro data, whether from an RPC or a file, can always parse that data because its
schema is provided. But that schema may not be exactly the schema that was expected. For
example, if the data was written with a different version of the software than it is read, then
records may have had fields added or removed. This section specifies how such schema
differences should be resolved.

We call the schema used to write the data as the writer's schema, and the schema that the
application expects the reader's schema. Differences between these should be resolved as
follows:

• It is an error if the two schemas do not match.

To match, one of the following must hold:

• both schemas are arrays whose item types match
• both schemas are maps whose value types match
• both schemas are enums whose names match
• both schemas are fixed whose sizes and names match
• both schemas are records with the same name
• either schema is a union
• both schemas have same primitive type
• the writer's schema may be promoted to the reader's as follows:

• int is promotable to long, float, or double
• long is promotable to float or double
• float is promotable to double

• if both are records:
• the ordering of fields may be different: fields are matched by name.
• schemas for fields with the same name in both records are resolved recursively.
• if the writer's record contains a field with a name not present in the reader's record,

the writer's value for that field is ignored.
• if the reader's record schema has a field that contains a default value, and writer's

schema does not have a field with the same name, then the reader should use the
default value from its field.

• if the reader's record schema has a field with no default value, and writer's schema
does not have a field with the same name, an error is signalled.

• if both are enums:
if the writer's symbol is not present in the reader's enum, then an error is signalled.

Avro 1.3.2 Specification

Page 17
Copyright © 2009 The Apache Software Foundation. All rights reserved.

• if both are arrays:
This resolution algorithm is applied recursively to the reader's and writer's array item
schemas.

• if both are maps:
This resolution algorithm is applied recursively to the reader's and writer's value schemas.

• if both are unions:
The first schema in the reader's union that matches the selected writer's union schema is
recursively resolved against it. if none match, an error is signalled.

• if reader's is a union, but writer's is not
The first schema in the reader's union that matches the writer's schema is recursively
resolved against it. If none match, an error is signalled.

• if writer's is a union, but reader's is not
If the reader's schema matches the selected writer's schema, it is recursively resolved
against it. If they do not match, an error is signalled.

A schema's "doc" fields are ignored for the purposes of schema resolution. Hence, the "doc"
portion of a schema may be dropped at serialization.

Avro 1.3.2 Specification

Page 18
Copyright © 2009 The Apache Software Foundation. All rights reserved.

	1 Introduction
	2 Schema Declaration
	2.1 Primitive Types
	2.2 Complex Types
	2.2.1 Records
	2.2.2 Enums
	2.2.3 Arrays
	2.2.4 Maps
	2.2.5 Unions
	2.2.6 Fixed

	2.3 Names

	3 Data Serialization
	3.1 Encodings
	3.2 Binary Encoding
	3.2.1 Primitive Types
	3.2.2 Complex Types
	3.2.2.1 Records
	3.2.2.2 Enums
	3.2.2.3 Arrays
	3.2.2.4 Maps
	3.2.2.5 Unions
	3.2.2.6 Fixed

	3.3 JSON Encoding

	4 Sort Order
	5 Object Container Files
	5.1 Required Codecs
	5.1.1 null
	5.1.2 deflate

	6 Protocol Declaration
	6.1 Messages
	6.2 Sample Protocol

	7 Protocol Wire Format
	7.1 Message Transport
	7.1.1 HTTP as Transport

	7.2 Message Framing
	7.3 Handshake
	7.4 Call Format

	8 Schema Resolution

