Apache Avro# 1.11.0 IDL

Table of contents
L INETOAUCKION. ... oot et e e e e e e e e et e e e e e e e e e e eeeeeeeee s e neeeeeeeeeeeeaannneneeeeeeeens
A O Y VL= SRR

O 0100 TSR
5 DefiNiNg an ENUMEIAiON........cceeiieiieie et ee st e e s sae e sseesteenesneesneeseeneennean
6 Defining a Fixed Length FIeld.........ccoiieiiiecece e
7 Defining ReCOrdS and EITOrS.........ooiiiiiiieieesese et
7.1 PIIMITIVE TYPES. ettt ettt ettt e et bbbt e e e n e b e nbeenenne e e s
2 o e [z B I =< RO URRTRR
7.3 References to Named Schemata...........cooviiiieiiiie s
7.4 DEFAUIT VAIUEBS.......ceiiiiectieeee ettt
7.5 COMPIEX TYPES . eieieeieeiteeiesee st e et este e te e s e e e e eseeste e sesseesseeaeeseesseensessaeaseenseeneensennes
8 DEfiNING RPC MESSAJES.......coiuiiiiriiiiisiesieeiieee ettt sttt s e bbbt ne e e e
9 Other Language FEAIUIES.............oiieieieierie sttt nre e
0.1 COMUMENES. ... eeeueeeieeeteeetee et et e e et este e e se e seeeeeesseesaseeae e aaeeeaseeeaneeseeanneeseesaneeneeannennseas
9.2 ESCaPING TABNEITIES.....ee et
9.3 Annotations for Ordering and NamMESPACES..........ccceveererieeiieereeieseesieesee e sre e eree e
10 ComMPIEte EXAMPIE.......ee ettt re et e e re et e e nreene e

Apache Avro# 1.11.0 IDL

1 Introduction

This document defines Avro IDL, a higher-level language for authoring Avro schemata.
Before reading this document, you should have familiarity with the concepts of schemata and
protocols, as well as the various primitive and complex types available in Avro.

2 Overview

2.1 Purpose

The aim of the Avro IDL language is to enable developers to author schematain away
that feels more similar to common programming languages like Java, C++, or Python.
Additionally, the Avro IDL language may feel more familiar for those users who have
previously used the interface description languages (IDLs) in other frameworks like Thrift,
Protocol Buffers, or CORBA.

2.2 Usage

Each Avro IDL file defines asingle Avro Protocol, and thus generates as its output a JSON-
format Avro Protocol file with extension . avpr .

Toconvert a. avdl fileintoa. avpr file, it may be processed by thei dl tool. For
example:

Thei dl tool can also processinput to and from stdin and stdout. Seei dl - - hel p for full
usage information.

A Maven pluginis aso provided to compile .avdl files. To useit, add something like the
following to your pom.xml:

Apache Avro# 1.11.0 IDL

3 Defining a Protocol in Avro IDL

An Avro IDL file consists of exactly one protocol definition. The minimal protocol is defined
by the following code:

Thisis equivaent to (and generates) the following JSON protocol definition:

The namespace of the protocol may be changed using the @ranmespace annotation:

This notation is used throughout Avro IDL as away of specifying properties for the
annotated element, as will be described later in this document.

Protocolsin Avro IDL can contain the following items:

» Imports of external protocol and schemafiles.
» Definitions of named schemata, including records, errors, enums, and fixeds.
» Definitions of RPC messages

4 Imports

Files may be imported in one of three formats:
* AnIDL file may be imported with a statement like:

A JSON protocol file may be imported with a statement like:

)
[}
«Q
[0)
w

Apache Avro# 1.11.0 IDL

A JSON schemafile may be imported with a statement like:

Messages and types in the imported file are added to thisfile€'s protocol.
Imported file names are resolved relative to the current IDL file.

5 Defining an Enumeration

Enums are defined in Avro IDL using asyntax similar to C or Java. An Avro Enum supports
optional default values. In the case that areader schemais unable to recognize a symbol

written by the writer, the reader will fall back to using the defined default value. This default
isonly used when an incompatible symbol isread. It is not used if the enum field is missing.

Example Writer Enum Definition

Example Reader Enum Definition

In the above example, the reader will use the default value of CIRCLE whenever reading
data written with the OVAL symbol of the writer. Also note that, unlike the JSON format,
anonymous enums cannot be defined.

6 Defining a Fixed Length Field
Fixed fields are defined using the following syntax:

This exampl e defines a fixed-length type called MD5 which contains 16 bytes.

7 Defining Records and Errors

Records are defined in Avro IDL using asyntax similar toast r uct definitionin C:

o
%}
Q
@
N

Apache Avro# 1.11.0 IDL

The above example defines arecord with the name “Employee” with three fields.
To define an error, simply use the keyword er r or instead of r ecor d. For example:

Each field in arecord or error consists of atype and a name, optional property annotations
and an optional default value.

A typereferencein Avro IDL must be one of:
A primitive type

A logical type
A named schema defined prior to this usage in the same Protocol
A complex type (array, map, or union)

7.1 Primitive Types

The primitive types supported by Avro IDL are the same as those supported by Avro's JSSON
format. Thislistincludesi nt , | ong, stri ng, bool ean, f| oat, doubl e,nul | , and
byt es.

7.2 Logical Types

Some of the logical types supported by Avro's JSON format are also supported by Avro IDL.
The currently supported types are:

deci mal (logica typedeci nal)

dat e (logical typedat e)

time_ns (logical typetine-ml1is)

ti mest anp_ns (logica typet i nest anp-mi | lis)

For example:

spec.html#Decimal
spec.html#Date
spec.html#Time+%28millisecond+precision%29
spec.html#Timestamp+%28millisecond+precision%29

Apache Avro# 1.11.0 IDL

7.3 References to Named Schemata

If a named schema has already been defined in the same Avro IDL file, it may be referenced
by name asiif it were a primitive type:

7.4 Default Values

Default values for fields may be optionally specified by using an equals sign after the field
name followed by a JSON expression indicating the default value. This JSON is interpreted
as described in the spec.

7.5 Complex Types

7.5.1 Arrays

Array types are written in a manner that will seem familiar to C++ or Java programmers.
An array of any typet isdenoted ar r ay<t >. For example, an array of stringsis
denoted ar r ay<st r i ng>, and amultidimensional array of Foo records would be
array<array<rFoo>>.

7.5.2 Maps

Map types are written similarly to array types. An array that contains values of typet is
written map<t >. Asin the JSON schemaformat, all maps contain st r i ng-type keys.

7.5.3 Unions

Union typesaredenoted asuni on { typeA, typeB, typeC, ... }.Forexample,
this record contains a string field that is optional (unioned with nul I):

Note that the same restrictions apply to Avro IDL unions as apply to unions defined in the
JSON format; namely, arecord may not contain multiple elements of the same type.

Page 6

spec.html#schema_record

Apache Avro# 1.11.0 IDL

8 Defining RPC Messages

The syntax to define an RPC message within a Avro IDL protocol is similar to the syntax for
amethod declaration within a C header file or a Javainterface. To define an RPC message
add which takes two arguments named f oo and bar , returning ani nt , smply include the
following definition within the protocol:

int add(int foo, int bar = 0);

Message arguments, like record fields, may specify default values.

To define a message with no response, you may use the aliasvoi d, equivalent to the Avro
nul | type:

voi d | ogMessage(string nessage);

If you have previously defined an error type within the same protocol, you may declare that a
message can throw this error using the syntax:

voi d goKaboon() throws Kaboom

To define a one-way message, use the keyword oneway after the parameter list, for
example:

void fireAndForget(string nessage) oneway;

9 Other Language Features

9.1 Comments
All Java-style comments are supported within a Avro IDL file. Any text following// ona
lineisignored, asisany text between/ * and */ , possibly spanning multiple lines.

Comments that begin with / ** are used as the documentation string for the type or field
definition that follows the comment.

9.2 Escaping ldentifiers

Occasionaly, one will need to use areserved language keyword as an identifier. In order to
do so, backticks (") may be used to escape the identifier. For example, to define a message
with the literal name error, you may write:

Page 7

Apache Avro# 1.11.0 IDL

This syntax is alowed anywhere an identifier is expected.

9.3 Annotations for Ordering and Namespaces

Java-style annotations may be used to add additional properties to types and fields
throughout Avro IDL.

For example, to specify the sort order of afield within arecord, one may use the @r der
annotation before the field name as follows:

A field'stype may also be preceded by annotations, e.g.:

This can be used to support java classes that can be serialized/deserialized viatheir toString/
String constructor, e.g.:

Similarly, a @anmespace annotation may be used to modify the namespace when defining
anamed schema. For example:

Copyright © 2012 The Apache Software Foundation. All rights reserved. Page 8

Apache Avro# 1.11.0 IDL

will define aprotocol inthef i r st Namespace namespace. The record Foo will be
definedinsoneQ her Nanespace and Bar will bedefinedinfi r st Nanmespace asit
inheritsits default from its container.

Type and field aliases are specified with the @l i ases annotation as follows:

Some annotations like those listed above are handled specially. All other annotations are
added as properties to the protocol, message, schemaor field.

10 Complete Example

The following is a complete example of a Avro IDL file that shows most of the above
features:

Copyright © 2012 The Apache Software Foundation. All rights reserved. Page 9

Apache Avro# 1.11.0 IDL

Additional examples may be found in the Avro source tree under thesrc/test/i dl /
i nput directory.

Apache Avro, Avro, Apache, and the Avro and Apache logos are trademarks of The Apache
Software Foundation.

Page 10

	Table of contents
	1 Introduction
	2 Overview
	2.1 Purpose
	2.2 Usage

	3 Defining a Protocol in Avro IDL
	4 Imports
	5 Defining an Enumeration
	6 Defining a Fixed Length Field
	7 Defining Records and Errors
	7.1 Primitive Types
	7.2 Logical Types
	7.3 References to Named Schemata
	7.4 Default Values
	7.5 Complex Types
	7.5.1 Arrays
	7.5.2 Maps
	7.5.3 Unions

	8 Defining RPC Messages
	9 Other Language Features
	9.1 Comments
	9.2 Escaping Identifiers
	9.3 Annotations for Ordering and Namespaces

	10 Complete Example

